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Key information: 

1. Research question: Is integration of an Augmented Reality system for guiding External 

Ventricular Drain placement technically feasible? 

2. Findings: Augmented Reality guided External Ventricular Drain placement demonstrated 

technical feasibility, achieving optimal placement in three out of an initial series of four simulated 

procedures. The mean workflow time was 22:45 mm:ss (SD ± 11:38 mm:ss) and mean Fiducial 

Registration Accuracy was  4.1 mm (SD ± 1.7 mm).   
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3. Meaning: Integrating an augmented reality system for External Ventricular Drain shows potential 

to improve the accuracy of the procedure while not substantially increasing procedural cost, time 

and complexity.  



MANUSCRIPT  

Introduction  

External ventricular drain (EVD) placement, a common neurosurgical procedure for managing increased 

intracranial pressure, traditionally relies on a freehand approach guided by anatomical landmarks1. 

Suboptimal drain placement occurs in 26% of cases, leading to a higher likelihood of EVD dysfunction 

and reoperation2. Repeated attempts at cannulation likely increase the risk of hemorrhage and infection. 

Although image-guided methods reduce the rate of suboptimal placement under 10%2, such methods are 

limited by their cost and technical complexity. Augmented Reality (AR) technology facilitates real-time 

interaction with virtual overlays superimposed onto the real patient, providing significant potential for 

assisting EVD procedures. Previously described AR systems show feasibility, but are not readily 

integrable in clinical workflows3–6.   

For this study, we co-developed an EVD guidance system for AR Head-Mounted Displays (AR-HMDs) 

that is readily compatible with existing hospital infrastructure. We assessed the feasibility of the system 

through several AR-assisted EVD placements in anatomical phantoms.  

Material and methods 

We developed an AR-EVD application incorporated as a module within our previously described medical 

AR, segmentation and cloud platform (Lumi, Augmedit, Naarden, The Netherlands)7,8. The AR-EVD 

module guides a user step-by-step through the intraoperative phase. First, an EVD trajectory with a target 

point inside a 3-D model of the ventricles is indicated. Optionally, 6 to 8 fiducials are planned on the 3-D 

model of the skin to facilitate point-based matching. Subsequently, point-based or contour-based image-

to-patient registration is performed using a custom stainless-steel pointer and reference device, both 

equipped with laser-engraved optical markers. Continuous guidance of the EVD is provided using a 

custom tracking tool. A calibration step automatically determines the position of the EVD tip relative to 

the tracking tool. During EVD placement, the software continuously displays the distance to the target 

point and the angular offset between the EVD and the target point. 

To test the feasibility of the workflow, two neurosurgical residents performed bilateral AR-guided EVD 

placements on two anatomical phantoms. Post-operatively, the phantoms were scanned using CT to 

determine placement accuracy using the Kakarla grading scale9. 

Results 

No significant functional errors, bugs or crashes were observed during preliminary experiments. AR-

guided EVD placement was completed in 4 out of 4 placement attempts. 3 out of 4 placements were 



graded as a Kakarla 1, while 1 was graded as a Kakarla 2 due to placement in the contralateral ventricle. 

The average Euclidian distance from the intended target point to the actual drain tip was 9.50 mm (SD ± 

3.96 mm). The mean operational time of the complete procedure was 22:45 mm:ss (SD ± 11:38 mm:ss). 

Feedback indicated challenges regarding holographic interfacing and maintaining marker tracking. 

Discussion and Conclusion 

The AR-based system shows potential for enhancing the accuracy of EVD placements through real-time, 

interactive guidance. Advantages include the direct superimposition of holographic information, tracking 

of the relative position of the EVD, the possibility to pre-operatively evaluate the EVD’s trajectory and 

the limited required resource investment compared to conventional neuronavigation. The system is 

readily integrable with existing digital hospital infrastructure. 

However, despite 3 out of 4 feasibility procedures achieving EVD placement within the ipsilateral frontal 

horn, the deviation from the target point was still relatively large. Furthermore, using the system adds 

several minutes to the procedure. Lastly, challenges with user engagement in the virtual interface 

indicated suboptimal human-computer interaction. Feasibility testing was limited due to the small number 

of conducted procedures and the tactile and technical differences between the phantoms and real patients.  

The potential for this technology to reduce suboptimal placements and improve clinical outcomes is 

promising, but further validation is necessary. Future work will focus on refining the system’s accuracy, 

human-computer elements and expanding trial sizes.  
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APPENDIX 

Due to pending patent applications, figures pertaining to the hardware and software described in this 

study are currently withheld. These figures are expected to be publicly released prior to the time of 

CLINICCAI. 

Figure 1: Point-based image-to-patient registration using AR-EVD module 

Figure 2: Active EVD guidance using AR-EVD module 
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Key information: 

Research Question: How can non-invasive image-based deep-learning tools accurately predict molecular 

markers in brain tumors, facilitating better therapeutic strategies and prognostic outcomes?  

Findings: The MRI-based deep learning network, MC-net achieved a high accuracy of 96.4% in predicting 

IDH status. MC-net and Bayesian-Logistic-Regression model demonstrated a reliable bimodal distribution 

of mutation predictions. 

Meaning: This study introduces a non-invasive MRI-based clinical tool that significantly enhances the 

accuracy of glioma profiling, promising to shift current paradigms in brain glioma diagnosis and 

management. 

  



Introduction 

Genetic-subtyping and molecular-profiling of brain tumors can transform therapeutic strategies and 

enhance prognostic accuracy.1 Currently, molecular-markers are determined by obtaining glioma tissue via 

an invasive brain biopsy. Thus, non-invasive molecular-profiling has significant implications in therapy 

and prognosis. Recent studies show that non-invasive, image-based deep-learning-networks (DLN) can 

predict molecular-markers.2-5 However, clinical-translation of these methods can be limited due to 

challenges in clinical-usability, extensive pre-processing and a gap between DLN-predictions and clinical-

relevance. This study developed a clinical-tool (ClinIQ) for non-invasive molecular-profiling, designed for 

seamless integration with imaging-database-systems (XNAT/Flywheel) and capable of exporting outputs 

directly to PACS systems. 

 

Material and methods 

We developed an MRI-based-DLN (MC-net) for non-invasive prediction of IDH-status using a UNet. It 

was implemented for a voxel-wise dual-class-segmentation of the whole-tumor and IDH-prediction. MC-

net was trained on 1082 cases from TCIA, UTSW and UCSF and evaluated on 1236 cases from NYU, 

UWM, EGD and UPENN.6-9 We employed a Bayesian logistic regression (BLR) model to calculate 

confidence-scores (CS) for each prediction, using predicted voxel-percentages and ground truth from the 

test-data. MC-net+BLR was further tested and validated on 196 additional held-out UTSW cases. 

The developed pipeline is as shown in Fig1. MRI from the scanner is converted from DICOM to NIf tI using 

the Dcm2niix tool. Subsequently, a multi-contrast sequence picker selects the required sequences (T1-pre, 

T1GD, T2w & T2-Flair). These selected images are processed through the FeTS platform to produce 

template-registered and skull-stripped MRI, leading to IDH prediction using MC-net. The BLR model then 

estimates the CS for each prediction. The output predictions including molecular-profiling and CS are 

stored in a JSON file. The C3d-tool (ITK) transforms the predicted segmentations back to native-space 

NIfTI.  Custom Python-code converts the NIfTI segmentations into visually appealing color images and 

PyDicom converts them back to DICOM. Finally, the DCMTK10-tool transfers this data to PACS systems 

for evaluation with the remainder of the subject imaging data.  

 

Results 

MC-net achieved an excellent test-accuracy of 96.4%. Its voxel-wise prediction showed a bimodal-

distribution with most cases classified either at very-low (0-5%) or very-high (95-100%) percentages of 

mutated-voxels (Fig 1). This distribution suggests that MC-net is highly effective in predicting IDH-status. 

MC-net+BLR achieved an accuracy of 94.4% on additional held-out test-cases providing proof of principle. 

Notably, the CS methodology allows for a higher likelihood than the overall accuracy for the IDH-wildtype 

class (approaching 98%). 

 

Discussion and Conclusion 

The developed tool for non-invasive molecular-profiling marks a substantial advancement in neuro-

oncology. Combining a deep learning network (MC-net) and a BLR model for molecular-profiling and 

estimating CS is an innovative approach to circumvent the invasive nature of current glioma biopsies. 

Notably, the high classification accuracy of MC-net emphasizes the potential of image-based molecular-

profiling as a reliable adjunct to traditional invasive methods. This is further substantiated by the bimodal 



distribution of predicted voxel-percentages, indicating a very high confidence in non-invasive molecular-

profiling. 

The ability to integrate ClinIQ with existing imaging database systems and export outputs directly to PACS 

reinforces its practicality and potential for widespread clinical adoption. The pipeline circumvents the 

traditional challenges associated with deep learning networks, such as extensive preprocessing and DLN-

predictions' relevance, by optimizing the workflow for clinical usability and significance.  

In conclusion, we present a clinical-tool for non-invasive molecular-profiling designed for seamless 

integration with XNAT/Flywheel and capable of exporting outputs directly to PACS.  MC-net's high 

classification accuracy and CS from the BLR model demonstrate its efficacy and utility. This tool addresses 

the limitations of current approaches and has the potential to significantly improve patient outcomes and 

treatment paradigms. Future studies will be important in expanding the applicability in clinical settings, 

potentially establishing a new paradigm in diagnosing and managing brain tumors.  
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APPENDIX 

 
Table 1: MC-net IDH Classification Results. 

 NYU UWM EGD Upenn Overall  

Accuracy 96.0 93.6 96.3 98.0 96.4 

Sensitivity 93.6 81.2 93.3 81.8 92.0 

Specificity 96.9 94.7 97.7 98.5 97.3 

 

 

 

 

 

 

 

 

 

Figure 2: MC-net Testing procedure. 

Figure 1: Flow chart of the developed pipeline ClinIQ 



 

 

 

 

Figure 4: BLR curves to 
estimate Confidence Scores. 

Figure 3: Distribution of percent mutant voxels 

on test dataset. The distribution shows very low 

(0-5%) or very high (95-100%) percentages of 

predicted mutated voxels, suggesting a clear 

differentiation between mutated and wildtype 

gliomas. 
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Key information:

1. Research question: Do patients with Sjögren's syndrome present abnormal features in brain

MRI? Can these abnormalities be described with the usefulness of AI tools?

2. Findings: Our study confirmed multiple disrupted white matter tracts and reduced volumes in

particular brain areas, including novel observations in cerebellar peduncles and optic radiations.

These findings are correlated by other observations of significantly lowered volumes of

cerebellar cortex of base of the frontal lobes.



3. Meaning: AI tools provide fast and accurate assessment of integrity of white matter tracts and

volumes of brain structures, which can help focus on patients with higher risk of central nervous

system involvement. DTI and FLAIR could assist in the decision to start, monitor or

change/intensify treatment.



MANUSCRIPT

Introduction

Primary Sjögren's syndrome (pSS) is an autoimmune disease in which central nervous

system (CNS) involvement may occur. Incidence and pathogenesis of changes related

to CNS in pSS is not well understood. The diffusion tensor imaging (DTI) can be used

to demonstrate impaired integrity of cerebral white matter (CWM), especially by

quantitative values such as fractional anisotrophy (FA). Moreover high resolution 3D

sequences, such as 3D FLAIR images, can be used for assessment volumes of brain

structures.

Material and methods

A study group containing 33 patients with primary Sjögren's syndrome and a control

group containing 26 healthy patients were studied by performing DTI and 3D FLAIR

sequences. The study group consisted of patients who met the 2016 ACR/EULAR

classification criteria for pSS. The exclusion criteria consisted of: coexisting of other

connective tissue diseases, infectious diseases (including viral infection 3 months due

to MRI examination, also COVID-19), any neurologic and psychiatric diseases.

The DTI data was processed by a TractSeg1 algorithm, which is a fully convolutional

neural network (FCNN), resulting in a segmentation of 72 white matter (WM) tracts

per patient, as well as value of FA for each tract. The segmented WM tracts are

presented in Fig. 1.

The cerebral cortex was segmented on 3D FLAIR images into 68 parcells and the deep

brain structures and intracranial spaces were segmented to 33 structures by a

Hetalox brain segmentation algorithm2. Segmentation labels follow the FreeSurfer3

classification style, corresponding to the Desikan-Killiany atlas labels with minor

modifications are presented on Fig. 2.

Results

Considering all WM tracts collectively ('TOTAL') we observed a significant difference

between the study group and control group. Numerous areas with a significant

reduction in FA parameter values in the study group relative to the control group

were shown in (Fig. 3). The novel observations of altered values of FA in cerebellar

peduncles and optic radiations were presented. The areas with disrupted WM tracts

correlated with significantly lower volumes of cortex in cerebellum and base of

frontal lobes (Tab. 1).

Discussion and Conclusion

We found a significant (p<0.002) reduction of FA value in all cerebellar peduncles and

a significant (p<0,04) reduction of cerebellar cortex volume in pSS, to the best of our

knowledge such findings have never been reported before. Cerebellum damage is

typically associated with locomotor disturbances. Our study revealed reduced FA



values in both fronto-pontine tracts (p<0.0005), suggesting predictive pathological

alterations in fronto-pontine-cerebellar tracts. Disruption in these tracts may impair

procedural memory processes, affecting the learning and execution of complex

skills.4

Furthermore, we observed a significant (p<0.02) reduction in FA values in both optic

radiations, a previously unreported observation. Similar reductions in FA value have

been found in autoimmune diseases like neuromyelitis optica spectrum disorders

(NMOSD),5 which is suggested to be within the spectrum of CNS diseases in pSS

patients.6 The reduction in FA value is likely due to secondary Wallerian

degeneration, possibly arising from changes in anatomical locations typical of

alteration observed in NMOSD, particularly optic nerve involvement.5

In our study patients with pSS exhibited a significant (p<0.05) reduction in FA value

and volume in prefrontal area which can, affect higher brain functions as: emotional

processes, memory disorders, cognitive processes, habituation.7

Concluding, DTI and FLAIR of the brain are non-contrast agent studie that could be a

very useful tools used for screening and monitoring the severity of neuro-pSS. The

usefulness of automated methods such as TractSeg's algorithm and Hetalox brain

segmentation, allows for rapid and reproducible collection of qualitative and

quantitative data. Most importantly, the method requires minimal intervention and

achieves automatic, reproducible segmentation.
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APPENDIX

Figures

Fig. 1 Overview of all 72 WM tracts segmented by TractSeg of the brain (for tracts that occur in both the

left and right cerebral hemispheres, only the right-tract is shown in the figure). WM tracts abbreviations

arcuate fascicle- AF; anterior thalamic radiation – ATR; commissure anterior – CA; corpus callosum – CC

(rostrum – CC1, genu – CC2, rostral body – CC3, anterior body – CC4, posterior body – CC5, isthmus – CC

6, splenium - CC7), anterior thalamic radiation – ATR; cingulum – CG; corticospinal tract – CST; middle

longitudinal fascicle – MLF; fronto-pontine tract – FPT; fornix – FX; inferior cerebellar peduncle – ICP;

inferior occipito-frontal fascicle – IFOF; inferior longitudinal fascicle – ILF; . parieto-occipital pontine tract

– POPT; superior cerebellar peduncle – SCP; superior longitudinal fascicle I – SLF I; superior longitudinal

fascicle I – SLF II; superior longitudinal fascicle III – SLF III; superior thalamic radiation – STR; uncinate

fascicle – UF; thalamo-prefrontal tract – T_PREF; thalamo-premotor tract – T_PREM; thalamo-precentral

tract – T_PREC; thalamo-postcentral tract – T_POSTC; thalamo-parietal tract – T_PAR; thalamo-occipital

tract – T_OCC; ang. striato-fronto-orbital tract – ST_FO; striato-prefrontal tract – ST_PREF;

striato-premotor tract – ST_PREM; striato-precentral tract – ST_PREC; striato-postcentral tract –

ST_POSTC; striato-parietal tract – ST_PAR; striato-occipital tract – ST_OCC.



Fig. 2 Example brain segmentation of FLAIR sequence using Hetalox segmentation software.



Fig. 3 Tracts with statistically significant difference between study and control group are shown above

the red line. Pearson's correlation (r) and p-value are placed next to box-plots. WM tracts abbreviations:

arcuate fascicle- AF; anterior thalamic radiation – ATR; commissure anterior – CA; corpus callosum – CC



(rostrum – CC1, genu – CC2, rostral body – CC3, anterior body – CC4, posterior body – CC5, isthmus – CC

6, splenium - CC7), anterior thalamic radiation – ATR; cingulum – CG; corticospinal tract – CST; middle

longitudinal fascicle – MLF; fronto-pontine tract – FPT; fornix – FX; inferior cerebellar peduncle – ICP;

inferior occipito-frontal fascicle – IFOF; inferior longitudinal fascicle – ILF; parieto-occipital pontine tract –

POPT; superior cerebellar peduncle – SCP; superior longitudinal fascicle I – SLF I; superior longitudinal

fascicle I – SLF II; superior longitudinal fascicle III – SLF III; superior thalamic radiation – STR; uncinate

fascicle – UF; thalamo-prefrontal tract – T_PREF; thalamo-premotor tract – T_PREM; thalamo-precentral

tract – T_PREC; thalamo-postcentral tract – T_POSTC; thalamo-parietal tract – T_PAR; thalamo-occipital

tract – T_OCC; ang. striato-fronto-orbital tract – ST_FO; striato-prefrontal tract – ST_PREF;

striato-premotor tract – ST_PREM; striato-precentral tract – ST_PREC; striato-postcentral tract –

ST_POSTC; striato-parietal tract – ST_PAR; striato-occipital tract – ST_OCC.

Tables
Table 1: Brain structures with significantly lower volumes in pSS patients compared to control group.

Structure p value

left inferior lateral ventricle 0.0172

left cerebellum cortex 0.0285

left accumbens area 0.0294

right cerebellum cortex 0.0378

rh parsopercularis 0.0023

rh superiorfrontal 0.0110
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Key information: 

1. Research question:  
Can synthetic computed tomography angiography (CTA) images be generated 
from time-of-flight magnetic resonance angiography (TOF-MRA) images using 
paired image-to-image translation? 

2. Findings: 
Realistic synthetic CTA images were generated based on the corresponding co-
registered TOF-MRA images. While a baseline U-Net architecture produces 
suboptimal results, the application of a diffusion-based model significantly 
improves the perceived visual quality of the synthetic CTA images. 

3. Meaning:  
The ability to generate realistic synthetic CTA from TOF-MRA could alleviate the 
scarcity of open-source CTA data and synthetic data be used for the 
development of AI computer vision models for clinical use. 

 
MANUSCRIPT 
 
Introduction 
Vessel neuroimaging techniques such as Time-of-Flight Magnetic Resonance 
Angiography (TOF-MRA) and Computed Tomography Angiography (CTA) provide unique 
visual information crucial for diagnosis, treatment and monitoring of cerebrovascular 
disease. While CTA might offer unique advantages with respect to diagnostic sensitivity, 
cost and acquisition time, it is also associated with limitations such as radiation exposure 
and potential side effects or contraindications of contrast agents. In addition, most AI-
based imaging applications in acute stroke are developed for CTA workflows, whereas 



the availability of open-source CTA data of stroke patients is highly limited. Image-to-
image translation is a promising option used to generate synthetic data from an input 
modality. Synthetic complementary CTA vessel imaging data can be used to improve the 
robustness and generalization of clinical AI applications. In this work, we generate CTA 
images from TOF-MRA using denoising-diffusion probabilistic models1. 
 
Material and Methods 
We use data from the Topology-Aware Anatomical Segmentation of the Circle of Willis 
(TopCow)2 challenge. The dataset comprises patients admitted to the Stroke Center of 
the University Hospital Zurich and provides paired CTA and TOF-MRA imaging. The 
available data is already anonymised and defaced. 
 
We co-register the TOF-MRA images to the CTA images using FSL-FLIRT3. Afterwards, 
the images are resampled to (256,256,256) with an isotropic voxel spacing of 0.6mm. We 
extract 2D slices, 80 per patient. Overall we use 82 patients and split them into training 
(n=65) and test sets (n=17). 
 
Two different paired image-to-image translation methods are trained and compared to 
learn a mapping from TOF-MRA to CTA: a U-Net4 baseline and the same U-Net 
architecture reframed as a diffusion-based model with the source image as conditioning 
information. We use diffusion with v-objective parametrization5 and Min-SNR weighting6. 
We augment using random flipping, translation and cut-outs. Random cut-outs are only 
applied to the source image. 
 
We evaluate the model using Peak Signal-to-Noise Ratio (PSNR), Multi-Scale Structural 
Similarity Index Measure (MSSIM, SSIM) and Learned Perceptual Image Patch Similarity 
(LPIPS)7 perceptual loss using AlexNet8. Moreover, we evaluate the model on a 
downstream task, training segmentation models of the Circle of Willis on the synthetically 
generated data. The nnUnet9 framework was used to train the models with 5-fold cross-
validation. The test dataset for segmentation (n=17) was split into training (n=10) and test 
(n=7) sets. The segmentations were compared using the Dice coefficient and the 
(balanced) average Hausdorff distance. 
 
Results 
In the qualitative evaluation, the U-Net baseline provides images with high structural 
integrity but with limited perceived visual quality. CTA images created by the diffusion-
based model look visually more realistic and the synthetic texture of the brain tissue 
resembles the original CT more closely. In the quantitative evaluation, the diffusion model 
outperformed the U-Net baseline in terms of perceptual loss but showed inferior results 
on other measures indicating a discrepancy to the visual analysis. 
 
In the downstream segmentation analysis, the models trained on CTA data synthesized 
from TOF-MRA data could be applied to real CTA images to segment arteries of the Circle 
of Willis. Training on synthetic data generated by the diffusion model achieved better 
segmentation results compared to synthetic data of the U-Net baseline model.  
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Discussion and Conclusion 
We showed a promising way of performing modality conversion in vessel neuroimaging. 
The proposed method can be used to generate synthetic CTA data from available TOF-
MRA datasets to be used in downstream AI applications such as aneurysm segmentation, 
occlusion detection and automated collateral score assessment. This has the potential to 
improve the accuracy and generalization of AI models in medical imaging. Future works 
should assess the potential benefits and use cases of synthetic CTA images in clinical 
practice. 
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Appendix 
 

Figure 1: Baseline U-Net model performance and conditional diffusion model 
performance on the validation set. The diffusion model was sampled for 100 steps. The 
first row shows the TOF-MRA image, the second row the target CTA image, the third 
row the generated image by the Diffusion model, the fourth row the image produced by 
the U-Net baseline 
 

 
 

 
Table 1: Comparison of Metrics for the two methods (down arrow: lower is better, up 
arrow: higher is better). The diffusion model is sampled for 100 sampling steps. 

 

Method val loss (↓) SSIM (↑) MSSIM (↑) PSNR (↑) perceptual (↓) 

Baseline 0.0695 0.5941 0.7796 17.6020 0.3087 

Diffusion 0.0958 
 

0.5216 
 

0.7239 16.2069 0.1685 



Figure 2: Downstream vessel segmentation performance using real and translated 
synthetic CTA data.

 
 
Table 2: Downstream segmentation task analysis (down arrow: lower is better, up arrow: 
higher is better) 

 
 
 
 
 
 
 
 
 

 

Training Data  Dice (↑) AHD (↓) bAHD (↓) 

Real data 0.831 1.493 1.559 

Baseline 0.744 4.360 5.052 

Diffusion 0.764 3.310 3.398 
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Key Information 

• Research question 
The aim of the study is to evaluate the generalization capabilities of a Neural Network 
trained for predicting functional outcome on day 90 after ischemic stroke measured by the 
modified Rankin Scale. 

• Findings 
Model performance on the derivation cohort is strong and seems to persist across the 
analyzed external validation sets. 

• Meaning 
We show the most comprehensive external validation of an AI-based prediction model in 
stroke so far. The studied model has the potential to support treatment decisions across the 
globe. Our methodology can inspire future research to ensure reliable translation of AI into 
clinical practice. 
 
Manuscript 

Introduction 
Stroke is a leading cause of disability and mortality worldwide. Modelling of prognosis and 
automation of biomarker extraction have the potential to aid treatment decisions and foster 
precision medicine in stroke. However, to date the AI models proposed for stroke decision 
support have struggled to retain their performance achieved on derivation cohorts when 
applied to unseen datasets or populations. Hence, external validation of AI-based 
approaches with robust testing methodology is a vital requirement to assess the 
generalization capabilities of models and validity in various patient groups; unfortunately, 
standardized AI guidelines for validation studies to assist researchers are scarce.  

Materials and Methods 
In the current project, we aim to investigate novel methodological principles for clinical 
validation of a Neural Network model trained on clinical tabular data of ischemic stroke 
patients to predict the full scale of 90 day modified Rankin Scale (mRS). We established a 
comprehensive validation cohort, containing retrospective data from 10+ centers on three 
continents. Classification performance is tested according to multiple metrics (e.g. 
sensitivity, specificity, receiver operating characteristic analysis) for the full-scale of the mRS 
score as well as in dichotomized (mRS<=2; mRS>2) and trichotomized (mRS<=2; 2<mRS<=4; 
mRS>4) scenarios. Furthermore, a novel multi-class model calibration approach and feature 
importance analysis are employed.  
Besides general performance analysis, we also conduct a comprehensive sub-groups 
analysis concerning groups of age (e.g. <65, >80), gender, stroke severity (National Institutes 
of Health Stroke Scale - NIHSS>5, Alberta Stroke Program Early CT Score - ASPECTS<8), 
occluded artery (e.g. posterior circulation, ICA, M1/M2), medical history (e.g. previous 
stroke, cardiac record), and treatment methods (intravenous thrombolysis, mechanical 
thrombectomy). 



Results 
To date, we have finalized data inclusion and managed to include patients from the German 
Stroke Registry (GSR, n=5,412), MR CLEAN trial (n=500)1, Hadassah Medical Center (HAD, 
n=944), University Hospital Heidelberg (HDB, n=1,254), University Hospital Vall d’Hebron 
(n=2,170), MR CLEAN Registry (MRCLEAN-R, n=4,737), Bordeaux University Hospital (n=237), 
Mie Chuo Medical Center (n=30), Mie University Hospital (n=37), Mie Prefectural General 
Medical Center (n=117), Suzuka Kaisei Hospital (n=97), Yale New Haven Hospital (n=445) 
and an open source dataset by the Inter-university Consortium for Political and Social 
Research (n=2,888)2. 
The model was trained on the combination of the GSR and MR CLEAN trial data, and then 
consecutively fine-tuned on data from HDB and HAD in two separate steps. 29 features 
including demographics, clinical examination and lab results (NIHSS, blood-pressure, serum 
glucose, etc.), medical history (stroke, atrial fibrillation, etc.), image-derived information 
(ASPECTS, Collateral score, occluded artery) and workflow variables (onset-to-
admission/imaging) were used. Model training and fine-tuning involved 4-fold cross 
validation and selection of the best model with respect to test set performance (distinct 
from the training set) in each step. All remaining datasets are used for external validation. 
The model achieved high prediction performance in the test sets of the training and fine-
tuning cohorts (dichotomized/trichotomized/full-scale AUCs: 0.75-0.88/0.68-0.84/0.66-0.76) 
and showed good calibration in calibration analysis (Expected Calibration Error averaged 
across increasing mRS thresholds was 0.038). The model ranks age, NIHSS and pre-stroke 
mRS consistently as the 3 most important features. 
Preliminary analysis of the combined Japanese cohort (JPA) and the MRCLEAN-R showed 
good generalization and minor deviation of classification performance only in full-scale mRS 
predictions (JPA dichotomized/trichotomized/full-scale AUC: 0.80/0.72/0.67, MRCLEAN-R 
dichotomized/trichotomized/full-scale AUC: 0.76/0.70/0.65). The analysis is ongoing and 
will be concluded before the conference date. 

Discussion and Conclusion 
We present the largest scale external validation of an AI-based prediction model in stroke 
up to date. Our baseline results show strong prediction performance of the model, and its 
generalization capabilities seem highly promising. Moreover, our study serves as a strong 
methodological blueprint for reliable translation of AI models into clinical practice. 
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Appendix 

Evaluation 
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 Figure 1. Confusion matrices in dichotomized, trichotomized and full-scale scenarios. First 4 rows 
show performance on derivation datasets (used for training, finetuning), last 2 rows show the first 
results on 2 the external validation datasets. 
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Figure 2. Feature importance ranking examples. Features are ordered by absolute magnitude of 
contribution and colors indicate the contribution for predicting the various classes of mRS. 
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MANUSCRIPT 

Introduction  

Infant meningitis is a potentially life-threatening and disabling disease. Diagnosis 
typically requires a lumbar puncture (LP) to collect cerebrospinal fluid (CSF) for 
laboratory-based analysis1. The clinical presentation in young infants and newborns is 
often unspecific, hence making LPs part of a protocolized systematic screening 
approach in high-income settings. LPs are invasive, carry risks, are often blood-
contaminated and most yield negative results, given the diseases’ relatively low 
incidence2,3. However, in low-income settings, LPs and CSF exams are seldomly 
feasible, and suspected meningitis cases are mainly treated empirically4. This study 
aims to validate a novel, non-invasive transfontanellar CSF white blood cell (WBC) 
counter, used to classify between low and high levels of WBCs, to screen for 
meningitis, employing high-resolution ultrasound (HRUS) and deep learning (DL). 

Material and methods 

We enrolled patients under 24 months with suspected meningitis and an open 
anterior fontanelle who underwent LP within 24h from study enrolment, in 5 hospitals 
(3 Spanish, one Mozambican and one Moroccan) (2020-2023), after obtaining consent 
from legal guardians. We obtained images showing the backscatter pattern from CSF 
using a customized HRUS probe5 (NeosonicsÒ), positioned over the open anterior 
fontanelle region of the infants’ head (Figure 1A). A DL model based on the Resnet50 
architecture6 was trained to classify CSF patterns according to WBC values obtained 
through the LP, setting a 30 cells/mm3 threshold to differentiate controls from cases 
on an individual image-level. Patient-level results were obtained applying a soft voting 
strategy, by computing the maximum of the two median class probabilities over 
individual images (Figure 1B). 

 

Results 

We collected 2237 images from 34 patients with paired LPs WBC count results (10 ≥30 
cells/mm3, 24 <30 cells/mm3) from Spanish and Mozambican hospitals to train the 
algorithm. Employing a leave-one-out methodology7 for patient-level classification, 
we tested each patient while training the model on the remaining data. Additionally, 
for independent model testing, we gathered 1545 images from 42 patients alongside 
paired LPs results (8 ≥30 cells/mm3, 34 <30 cells/mm3) from the Moroccan hospital. 
The DL model achieved 94.7% accuracy with 94.4% sensitivity and 94.8% specificity for 
WBC levels below/above 30 cells/mm3 at the patient level. When analysing the cohorts 
separately we obtained the following results: Spanish cohort: sensitivity/specificity 
100%/80%; Mozambican cohort: sensitivity/specificity 100%/100%; Moroccan cohort: 
sensitivity 87.5 and specificity 97.1% (Table 1). The median fontanel thickness positive 
cases all cohorts is 3.75mm (IQR 3.43-4.5mm). Single image frames probabilities and 
cohort median values are shown in Figure 1C.  



21 Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona (Spain) 
22 CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III 
Presenting author:  

Sara Ajanovic Andelic 

Barcelona Institute for Global Health (ISGlobal) 

C/Rosselló 132, 5a (08036) Barcelona, Spain 

sara.ajanovic@isglobal.org 

+34 665535029 

 

Keywords: 

Infant Meningitis, Ultrasound, Deep Learning, Non-invasive Screening 

Key information: 

1. Research question: This study validates a novel, non-invasive transfontanellar cerebrospinal fluid 
(CSF) white blood cell counter for meningitis screening, employing high-resolution ultrasound 
(HRUS) and deep learning (DL). 

2. Findings: Applying the DL model on images of CSF backscatter patterns on 76 patients (18 cases, 
58 controls) we achieved 94.7% accuracy with 94.4% sensitivity and 94.8% specificity at the 
patient-level. 

3. Meaning: We show the potential of HRUS and DL as a non-invasive screening method in young 
infants and neonates to modulate meningitis suspicion and indications for lumbar puncture, the 
current gold standard for meningitis diagnosis.  



Discussion and Conclusion 

These results show the potential utility of HRUS and DL as a screening method based 
on accurate CSF WBC level classification to modulate indications for LPs among 
neonates and young infants. While this encourages further validation of the device 
efficacy, its application in standard practice could have potentially spared up to 94.8% 
of negative LPs and detected 94.4% of positive cases. The single false negative case 
with 40 cells/mm3 after correction for red blood cells (RBCs) contamination had a 
particularly thick fontanelle (4.8mm), possibly impacting sensitivity at such low WBC 
levels. Potential factors such as age and CSF volume or the thickness of the fontanel 
may affect signal saturation, as well as counting accuracy, respectively. These potential 
limitations guide future development to maintain sensitivity and robustness in those 
most challenging cases.  

In conclusion, this technology could potentially be used as a quick and non-invasive 
screening tool in young infants and neonates modulating meningitis suspicion and 
indications for LPs. This could ultimately lead to a more agile meningitis diagnosis 
especially in low- and middle-income settings, allowing a more efficient use of 
resources and improve patient outcomes at both the individual and global health 
levels. 
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Figures 

 

Figure 1: A. High-resolution ultrasonic (HRUS) probe (NeosonicsÒ), positioning over the infants’ head B. 
Deep learning binary classification model to distinguish between CSF images containing </≥ 30 cells/mm3 
and voting strategy for patient-level results. C. Single image frames probability for <30 cells/mm3 images 
(blue) being classified as <30 cells/mm3 or ≥30 cells/mm3 and for ≥30 cells/mm3 images (orange) being 
classified as <30 cells/mm3 or ≥30 cells/mm3 for Spanish, Mozambican and Moroccan cohorts. Cohort 
median values are represented as blue and dark orange crosses, respectively. 

 

Tables 
 

Table 1: Participants’ clinical information and DL algorithm results. False classifications are marked in red. 

Pati
ent 

Hospital Age 
(days) 

Weight 
(grams) 

Sex CSF 
appearance 

Correct
ed 
WBC 

CSF micro-
biology 

Blood 
micro-
biology 

Result of 
the HRUS 
device 

# of 
image 
frames 

Correct 
class 
probabi
lity 

1 HULP 4 2035 F turbulent 53 negative S. 
Hominis 

≥30 WBC 31 0.56 

2 HULP 63 5000 F clear 85 negative S. 
Agalactia
e 

≥30 WBC 24 0.87 

3 HULP 9 3900 F clear 520 Enterovirus  negative ≥30 WBC 44 0.93 



4 HULP 22 3370 M turbulent 2400 Klebsiella negative ≥30 WBC 50 0.89 
5 HQM 93 4900 M turbulent 300 Streptococcus 

agalactiae  
S. 
Agalactia
e 

≥30 WBC 28 0.68 

6 HQM 32 3600 M turbulent 430 Streptococcus 
agalactiae  

negative ≥30 WBC 36 0.83 

7 HQM       turbulent 169 negative negative ≥30 WBC 233 0.61 
Spanish >30 
WBC 

28.5 
[9-33] 

4235 [3385-
4775] 

  300 [153-558]         

8 HULP 64 4420 F clear 7 negative negative <30 WBC 11 0.87 
9 HULP 3 3290 F clear 3 negative negative <30 WBC 19 0.76 
10 HQM 16 3120 M clear 3 negative negative ≥30 WBC 15 0.38 
11 HSJD 17 2965 M clear 15 negative negative <30 WBC 14 0.81 
12 HSJD 4 3890 F clear 5 negative negative <30 WBC 24 0.73 
13 HSJD 5 2690 F hematic 9 negative negative ≥30 WBC 34 0.36 
14 HSJD 32 4000 M hematic 18 negative negative <30 WBC 81 0.71 
15 HSJD 61 4150 M clear 0 negative negative <30 WBC 18 0.83 
16 HSJD 337 8600 M clear 11 negative negative <30 WBC 55 0.95 
17 HSJD 23 4220 F clear 0 negative negative <30 WBC 64 0.60 
Spanish ≤30 
WBC 
  

17 [5-
44.5] 

3925 [3095-4925] 
  

6 [3-
12] 

          

Total Spanish 
participants 
  

23 [8-
33.5] 

3922.5 [3035-4665] 
  

            

18 HCM 44 4200 F NA 3520 Haemophilus 
spp 

Hemophil
us spp 

≥30 WBC 140 0.71 

19 HCM 40 4000 Mal
e 

hematic 25 negative negative <30 WBC 39 0.58 

20 HCM 49 2400 F turbulent 19200 negative negative ≥30 WBC 57 0.61 
21 HCM       turbulent 260 negative NA ≥30 WBC 107 0.63 
Mozambican 
>30 WBC 

44 
[40-
44.5] 

4000 [3400-4300] 
  

1435 [260-7890]         

22 HCM 52 3500 M clear 0 negative negative <30 WBC 45 0.91 
23 HCM 311 5800 M clear 0 negative negative <30 WBC 35 0.94 
24 HCM 48 3800 F clear 0 negative negative <30 WBC 116 0.86 
25 HCM 137 7700 M clear 0 negative negative <30 WBC 108 0.95 
26 HCM 41 4600 M clear 0 negative negative <30 WBC 69 0.89 
27 HCM 197 7500 M clear 0 negative negative <30 WBC 108 0.81 
28 HCM 124 4400 F clear 0 negative negative <30 WBC 101 0.88 
29 HCM 32 5200 M clear 0 negative negative <30 WBC 86 0.56 
30 HCM 13 2900 F clear 0 negative negative <30 WBC 22 0.67 
31 HCM 3 4200 F clear 0 negative negative <30 WBC 91 0.86 



32 HCM 121 9200 M clear 0 negative negative <30 WBC 123 0.78 
33 HCM 131 7400 F clear 0 negative negative <30 WBC 182 0.63 
34 HCM 42 3600 M clear 0 negative negative <30 WBC 27 0.76 
Mozambican 
≤30 WBC  

52 [32 
- 140] 

4600 [3800-6950] 
  

0 [0-0]           

Total 
Mozambican 
participants  

47.5 
[33-
100.5] 

4200 [3500-5862.5] 
  

            

35 HER 4 2180 M turbulent 3725 Serratia 
marcesens 

NA ≥30 WBC 60 0.73 

36 HER 14 1210 F clear 51 negative contamina
tion 

≥30 WBC 49 0.70 

37 HER 30 1315 F clear 53 negative negative ≥30 WBC 73 0.67 
38 HER 28 3130 M clear 39 Human 

Herpes Virus 
6 

negative ≥30 WBC 93 0.59 

39 HER 10 1220 M hematic 170 negative negative ≥30 WBC 9 0.57 
40 HER 56 4450 M hematic 660 negative NA ≥30 WBC 10 0.50 
41 HER 2 4950 M hematic 254 negative NA ≥30 WBC 76 0.64 
42 HER 3 3880 M hematic 40 negative NA <30 WBC 33 0.28 
Moroccan >30 
WBC 

12 [4-
28] 

2655 [1220-4450] 
  

212 [2-
46] 

          

43 HER 1 3200 F xantochro
mic 

3 negative NA <30 WBC 31 0.93 

44 HER 23 3900 M clear 7 negative negative <30 WBC 22 0.93 
45 HER 0 3700 M hematic 0 negative negative <30 WBC 71 0.86 
46 HER 25 3500 M xantochro

mic 
8 negative NA <30 WBC 35 0.96 

47 HER 1 3150 F clear 10 negative NA <30 WBC 16 0.93 
48 HER 2 1900 M xantochro

mic 
28 negative negative <30 WBC 24 0.75 

49 HER 2 3120 M clear 4 negative negative <30 WBC 9 0.96 
50 HER 2 2800 M hematic 7 negative negative <30 WBC 67 0.89 
51 HER 6 1940 M xantochro

mic 
4 negative positive <30 WBC 29 0.87 

52 HER 2 3700 M hematic 11 Haemophilus 
influenzae 

negative <30 WBC 49 0.73 

53 HER 1 2400 M xantochro
mic 

3 negative negative <30 WBC 12 0.85 

54 HER 11 3029 M xantochro
mic 

8 negative NA <30 WBC 57 0.88 

55 HER 4 1560 F xantochro
mic 

15 negative negative <30 WBC 30 0.83 

56 HER 21 1350 M clear 2 negative negative <30 WBC 7 0.95 
57 HER 4 1395 F hematic 4 negative contamina

tion 
<30 WBC 53 0.74 

58 HER 2 1350 M hematic 0 negative negative <30 WBC 9 0.92 



59 HER 2 3500 M hematic 2 negative negative <30 WBC 13 0.88 
60 HER 93 2600 F xantochro

mic 
5 Staphylococcu

s aureus 
negative <30 WBC 9 0.91 

61 HER 2 3960 M xantochro
mic 

9 contaminated contamina
tion 

<30 WBC 53 0.86 

62 HER 3 3550 M xantochro
mic 

8 negative NA <30 WBC 18 0.78 

63 HER 8 1013 F hematic 14 negative contamina
tion 

<30 WBC 22 0.54 

64 HER 3 3050 M xantochro
mic 

4 negative negative <30 WBC 6 0.60 

65 HER 5 1520 F xantochro
mic 

1 negative negative <30 WBC 16 0.73 

66 HER 2 4185 M xantochro
mic 

2 negative negative <30 WBC 22 0.91 

67 HER 2 3880 M hematic 0 negative negative ≥30 WBC 24 0.45 
68 HER 17 1580 F hematic 0 negative NA <30 WBC 10 0.61 
69 HER 2 4800 M xantochro

mic 
25 negative negative <30 WBC 50 0.76 

70 HER 6 2175 M xantochro
mic 

14 Klebsiella 
pneumonaie 

negative <30 WBC 49 0.71 

71 HER 17 3700 F hematic 1 Entérovirus negative <30 WBC 19 0.69 
72 HER 3 3900 M hematic 14 negative negative <30 WBC 18 0.55 
73 HER 2 3760 M hematic 0 negative negative <30 WBC 36 0.66 
74 HER 7 4450 M hematic 29 negative negative <30 WBC 144 0.75 
75 HER 3 2870 M xantochro

mic 
1 negative negative <30 WBC 43 0.58 

76 HER 13 3190 M xantochro
mic 

2 negative negative <30 WBC 69 0.85 

Moroccan ≤30 
WBC 

3 [2-
17] 

3085 [1520-3900] 
  

2 [8-
24] 

          

Total 
Moroccan 
participants 

3.5 [2-
19] 

3125 [1740-3925] 
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Findings: By integrating convolutional block attention modules into a deep neural network, our model 

demonstrates high accuracy in detecting patients with rotator cuff tears, achieving an average AUC of 

0.889 and an accuracy of 0.831. 

Meaning: This study validates the efficacy of our deep learning model to accurately detect rotation cuff 
tears from radiographs, offering a viable pre-assessment or alternative to more expensive imaging 
techniques such as MRI. 
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MANUSCRIPT 

Introduction  

Initial radiograph evaluations often fail to identify soft tissue injuries such as rotator cuff tears. It 

necessitates further imaging with more expensive MRI examinations, increasing healthcare costs. In this 

study, we show that a convolutional neural network with channel attention and spatial attention 

modules can significantly enhance the accuracy of rotator cuff tear detection, only using a single 

shoulder radiograph. All shoulder radiograph data used for training the deep learning model were 

collected from our local clinic. It may offer a viable pre-assessment or alternative to more expensive 

imaging techniques such as MRI. 

Material and methods 

Data 

We retrospectively collected a dataset of shoulder radiographs from 99 patients from our clinic. The 

dataset comprises 50 patients with full-thickness rotator cuff tears (fRCT) and 49 without tears. We 

acquired radiographs in four angles – axial, glenoid, outlet, and anteroposterior (AP) – totaling 396 

images. All the images were acquired before surgery. Regions of interest (ROIs) essential for fRCT 

diagnosis were identified and annotated with bounding boxes on all images. These annotations were 

used to train the YOLO v5 model to automatically crop ROIs from all radiographs, and to efficiently 

handle the annotation process for all future data. The results fo ROI extraction are shown in Figure 2 and 

Table 1. The dataset was divided based on subject IDs with each containing four view-specific images. 

We applied 5-fold cross-validation due to the limited size of the dataset, resulting in 316 training images 

from 79 subjects and 80 test images from 20 subjects, ensuring no subject overlap between folds. 

Network Architecture and Training 

The ROIs extracted were further processed using Contrast-Limited Adaptive Histogram Equalization 

(CLAHE) to enhance bone structures and edge visibility, facilitating more detailed recognition of 

fractures and structural integrity. We employed a ResNet50 model applied with a Convolutional Block 

Attention Module (CBAM) to diagnose rotator cuff tears. CBAM enhances the model’s learning focus on 

essential features in medical image by sequentially applying channel attention and spatial attention. This 

method allows for a concentrated analysis of salient features crucial for accurately diagnosing rotator 

cuff tears. The pretrained ResNet50 was adapted to classify between the presence and absence of fRCT, 

with only two output classes in the final layer. The architecture of the model is shown in Figure 4. Due to 

the limited dataset of 99 subjects, we employ k-fold cross-validation to enhance the accuracy of the 

model's performance. Each fold in the k-fold cross-validation setup was balanced to have an equal ratio 

of fRCT and no-tear cases in both the train and validation datasets. 

Implementation Details 

We trained models on an NVIDIA RTX 3090 GPU using the SGD optimizer with a learning rate of 0.01 and 

a batch size of 8. To prevent overfitting, we employed various data augmentation techniques including 

rotation, horizontal flipping, random crop, scaling, translation, brightness adjustment, and inversion, as 

well as implementing a dropout rate of 0.2. All data was resized to 512x512 pixels prior to training. We 



utilized a CrossEntropyLoss for the loss function and a CosineAnnealingWarmupRestarts scheduler to 

dynamically adjust the learning rate during the training process. 

Results 

Using k-fold cross-validation, we evaluated the performance of our model across each fold. The average 

accuracy achieved was 0.831 (329/396). The AUROC for the two classes was 0.889, indicating a high 

level of discriminative ability. The Positive Predictive Value (PPV) was 0.852 (161/189), and the Negative 

Predictive Value (NPV) was 0.812 (168 /207). This is shown in Figure 5. The findings demonstrate that 

radiographs alone can effectively classify patients with fRCT, underscoring its potential utility in 

diagnostic settings. 

Discussion and Conclusion 

Our proposed method demonstrates that radiographs alone can effectively diagnose fRCT. This 

approach calculates the probability of rotator cuff tears, thereby assisting in the decision-making 

process of whether to proceed with MRI imaging. To increase the generalizability of the model, we plan 

to collaborate with multiple centers to incorporate a larger and more diverse set of radiograph data. 

Future research will aim to expand the dataset, which was collected from our clinic, and analyze the 

impact of different radiographic views (axial, glenoid, outlet, and AP) on the diagnosis of rotator cuff 

tears to improve the current model's performance. In the long term, we aim to achieve a level of 

diagnostic accuracy close to that of MRI-based diagnostics for rotator cuff tears. 
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APPENDIX 

 

Figure 1: Stages of a study for diagnosing rotator cuff tears using radiographs. The radiographs are 

processed through Yolo v5 to extract essential Regions of Interest (ROI). These are then used to train the 

ResNet-CBAM model, enabling the classification of patients with rotator cuff tears. Our study proposes a 

diagnostic framework that predicts the presence of rotator cuff tears using only radiographs, a more 

cost-effective and accessible option. The proposed method calculates the probability of rotator cuff 

tears in patients, thereby assisting in the decision-making process of whether to proceed with MRI 

imaging. 

 

 

 



 

Figure 2: Training YOLO v5 for ROI Extraction. We conducted the process of annotating 396 radiograph 

images from 99 subjects, followed by training the YOLO v5 model to detect regions of interest (ROI). The 

data was divided into training, validation, and test sets in a 70:15:15 ratio. The annotated data was 

subjected to augmentation processes including horizontal flip, rotation, and resizing. For resizing, the 

original aspect ratio of the images was maintained, and the remaining space was filled with black edges. 

Two versions of the model were trained: version 1 (exp1) with images resized to 640x640 pixels and 

version 2 (exp2) with images resized to 800x800 pixels. The best-performing version, exp 2, was selected 

based on its superior performance in ROI extraction as indicated in Table 1. The ground truth (GT) and 

prediction results illustrate that the YOLO v5 model successfully detected th ROIs with high accuracy, 

demonstrating its effectiveness in this application. 



 
Figure 3: Automated ROI Cropping in radiographs Using YOLO v5. We train YOLO v5 with data labeled 

with bounding boxes for the ROI. When the saved best-weights (exp2) are loaded and applied, all 

radiographic data in the dataset are automatically cropped to include only the ROI. For the diagnosis of 

fRCT, specific regions of interest (ROIs) were cropped from the original-sized radiographs A and C to 

produce images B and D, respectively. These particular ROIs were then utilized as training data. This 

process allows the model to more effectively identify the features of full-thickness Rotator Cuff Tears 

(fRCT) by excluding unnecessary regions during training. Additionally, it reduces variations in image size 

and positioning that can occur depending on the individual who performed the radiograph, thereby 

aiding in generalization. 

 

 

 

 

 

 

 

 



 

Figure 4: ResNet50-CBAM model structure. This figure is ResNet50 architecture with CBAM applied, 

enhancing feature representation by applying sequential channel and spatial attention mechanisms. It 

aids in enhancing performance by focusing on features necessary for the diagnosis of fRCT. 

 

 

 

Figure 5: ROC curves(A) and confusion matrix(B) on the test set. In the confusion matrix, 0 represents 

'no-tear' and 1 indicates 'fRCT'. During k-fold cross-validation, the cumulative results predicted by the 

model in each fold's test phase are presented in a confusion matrix. This is useful for assessing the 

average performance metrics of the dataset. 

 

 



 

Figure 6: Visualization of Prediction Results Using Grad-CAM. We visualized which regions of the 

radiograph the model focused on during training using Grad-CAM. It was observed that the areas our 

model concentrated on through learning closely align with the regions that should be examined during 

the initial diagnosis stages of fRCT. 

 

 

 

 

 

 

 

 

 

 



Table 1: Comparison of YOLO v5 Training Experiments. 

The metrics used to evaluate the YOLO v5 model include Precision, Recall, mAP_0.5, and mAP_0.5:0.95. 

mAP_0.5 measures the mean Average Precision at an Intersection over Union (IoU) threshold of 0.5, 

while mAP_0.5:0.95 averages the mean Average Precision across multiple IoU thresholds ranging from 

0.5 to 0.95. In our experiments, exp1 resized images to 640x640 pixels, and exp2 resized images to 

800x800 pixels. As shown in Table 1, exp2 slightly outperformed exp1 in mAP_0.5:0.95, achieving 0.8003 

compared to exp1's 0.7984. Therefore, we used the best weights from exp2 to perform the ROI crop on 

the images. 

 

 

Experiment version Precision Recall mAP_0.5 mAP_0.5:0.95 

exp1 0.9975 1.000 0.9950 0.7984 

exp2 0.9986 1.000 0.9950 0.8003 
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Introduction 

The estimated incidence of abdominal aortic aneurysms (AAA) is 0.4 to 0.67% in Western 

nations. Endovascular aortic repair (EVAR) emerged as a primary mode of aneurysm repair 

and gained widespread adoption [1]. Although the maximum aortic diameter (DMAX) presents 

the current reference standard for pre- and post-interventional assessment of patients with AAA, 

volumetric measurements may be more sensitive in detecting true aortic changes and 

identifying patients at risk [2, 3]. Importantly, the inter-rater variability of volumetric AAA 

measurements has been demonstrated to be less pronounced than that observed for DMAX [4]. 

However, semi-automatic volumetric measurement of AAAs presents a time-consuming 

method. Therefore, it is not widely established in clinical practice, and reliable automated 

approaches to volumetric AAA measurement are critically needed [5]. 

This study aims to train and validate a deep learning-based network that enables automated 

segmentation and volume determination of pre- and post-EVAR AAAs on computed 

tomography angiographies (CTA) both internally and externally. The clinical utility and 

efficiency gains facilitated by the tool were evaluated in comparison with vascular surgeons. 

 

Material and Methods 



In this HIPAA-compliant retrospective study, de-identified pre- and post-interventional CTAs 

of patients who underwent EVAR for management of infrarenal AAA between August 2017 

and March 2023 at our institution were investigated. The training dataset comprised 80% of 

these CTAs, with 20% assigned to internal validation dataset. Pre- and post-EVAR CTAs from 

two external sites were used for external validation purposes [6]. Ground truth volumetric 

measurements were manually performed on all CTAs from lowest renal artery to aortic 

bifurcation and evaluated by two observers for consistency. Within preprocessing, all images 

were tailored to CTA segments containing measurements. A self-configuring nnU-Net model 

trained on our training dataset was validated on both internal and external validation datasets. 

In a single-fold cross-validation setup, the model was trained for 1,000 epochs for segmentation 

of total aneurysm; based on the observed performance, we elected 500 epochs for segmentation 

of lumen (Fig 1) [7]. AI-generated TA and LU volumes were correlated with determined ground 

truth values. Within a separate experiment, semi-automatic volumetric AAA segmentations 

were performed on internal validation dataset by two attending vascular surgeons. The times to 

perform a complete segmentation from lowest renal artery to aortic bifurcation were compared 

with generation time of the model. Baseline patient demographics were recorded. 

 

Results 

A total of 110 patients with 84 (76.4%) males and 26 (23.6%) females were included in our 

internal datasets; the mean age was 74.1 years. A total of 176 pre- and post-EVAR CTAs 

including 35,915 slices (204.06 per CTA) were utilized to train our network; the mean slice 

thickness was 0.774 millimeters. For TA and LU of the internal validation (44 CTAs), mean 

Dice similarity coefficients were 0.972±0.013 and 0.963±0.017, respectively. For the external 

validation (40 CTAs), mean Dice similarity coefficients were 0.959±0.042 and 0.955±0.029, 

respectively (Table 1, Fig 2). The generated TA and LU volumes showed a very strong 

correlation with determined ground truth values on both internal (r=0.998, P<0.001; r=0.993, 



P<0.001) and external validation datasets (r=0.952, P<0.001; r=0.987, P<0.001) (Fig 3). Mean 

time savings of 59.2 (286.8vs116.9s) and 58.3% (276.3vs115.2s) provided by the model were 

demonstrated for TA and LU (Fig 4). 

 

Discussion and Conclusion 

Our network enables automated high-precision volumetric analysis of pre- and post-EVAR 

infrarenal AAAs. While related studies lack external validation, we presented an institution-

agnostic algorithm facilitating substantial measurement workflow acceleration [8-10]. It can be 

incorporated into routine clinical practice to aid a more precise, efficient, and standardized 

morpho-volumetric evaluation of pre- and post-EVAR AAAs. The model is in the process of 

embedding into a research instance of our PACS (Visage Imaging, Inc., CA) allowing the 

application to non-preprocessed CTAs (Fig 5). 
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Key Information (100 Words) 

Research Question 

Can a deep learning-based model improve the efficiency of morpho-volumetric analysis of 

AAAs by segmenting and measuring the total aneurysm and lumen volume of pre- and post-

interventional infrarenal abdominal aortic aneurysms on internal and external CTAs? 

 

Findings 

The presented treatment-agnostic network facilitates high-precision segmentation and volume 

determination of both pre- and post-interventional infrarenal AAAs. The results were 



reproducible on external CTAs. The model introduced significant time efficiency gains in 

comparison to experienced vascular surgeons. 

 

Meaning 

Our trained model enables accurate, reproducible, and efficient volumetric analysis of AAAs 

and is ready for clinical integration into PACS for sensitive AAA behavior monitoring. 
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Tables and Figures 

 

 

Figure 1.   Modified nnU-Net workflow 

The procedures of data annotation, network training, and validation are displayed. In addition 

to the existing model architecture provided by nnU-Net, the normalization of the CTA color 

channels was added to optimize the performance of our image analysis tool. 

 

 

 

 

 

 

 

 



 

Table 1.   nnU-Net performance metrics – total aneurysm and lumen 

The accuracy of the spatial segmentation masks generated by the network is quantitatively 

described. For the total aneurysm, median Dice Similarity Coefficients of 0.976 and 0.968 were 

observed in our internal and external validation datasets. For the lumen, mean Dice Similarity 

Coefficients of 0.963 and 0.955 were revealed in the internal and external validation datasets. 

 



 

Figure 2.   Representative CTA studies displaying AI-generated and ground truth 

segmentation masks of AAAs 

A - C. The images of a pre-EVAR AAA of the external validation dataset including the AI-generated 

segmentation (blue), the ground truth segmentation (yellow), and their overlap (green) are depicted 

on coronal (A), axial (B), and sagittal (C) planes (DSC 0.968). The AI-generated volume was 95.48 

and the ground truth volume 96.66 cm3. D - F. The CTA study of a post-EVAR AAA of the internal 

validation dataset including the related segmentations and their overlap are shown on coronal (D), 

axial (E), and sagittal (F) planes (DSC 0.976). The AI-generated volume was 191.7 and the ground 

truth volume 187.3 cm3. 

 



 

Figure 3.   Correlation of AI-predicted and ground truth volumes 

The volumes (in cm3) of the total aneurysm (A) and lumen (B) of the internal and external validation 

datasets calculated by the trained network were correlated with the ground truth volumes. The 

predicted aneurysm sac volumes displayed on both internal (r = 0.998, P < 0.001) and external 

CTAs (r = 0.952, P < 0.001), the lumen volumes presented in the internal (r = 0.993, P < 0.001) 

and external validation datasets (r = 0.987, P < 0.001) demonstrated a very strong correlation with 

the determined ground truth volumes. 

 



 

Figure 4.   Time efficiency gains – nnU-Net vs vascular surgeons measuring AAA volumes 

The time efficiency gains provided by the model in comparison with the manual measurements 

of two attending vascular surgeons are depicted. For total aneurysm segmentations, the model 

facilitated a mean time saving of 59.2 percent, whereas a mean time saving of 58.3 was observed 

for the lumen segmentations. 
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Key information:  
1. Research question: An abdominal aortic aneurysm (AAA) is a vascular pathology with 

significant morbidity and mortality. We are investigating the role of multimodal AI models that 
take into account clinical, imaging, and multi-omics patient data for prediction of AAA disease 
progression. 

2. Findings: Data infrastructure has been set up and clinical data collection is ongoing. Algorithms 
for automated segmentation of AAA geometry are developed. Proteomic and genomic 
analysis of patient biological samples is ongoing. 

3. Meaning: Patient-specific risk stratification tools can help clinicians to forecast the risks of 
rupture and decide the optimal time and treatment to be performed. 
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Figure 5.   PACS-integrated AAA algorithm – MPR series 

The layout of the volumetric AAA analysis tool embedded in our research PACS is displayed. 

Requiring the push of only one button (“Aorta Segmentation”), high-precision segmentations 

of the total aneurysm and lumen are automatically generated. 



MANUSCRIPT (word count: 599) 
 

Introduction   
An abdominal aortic aneurysm (AAA) is a pathological dilatation of the aorta and is associated with 
significant mortality when ruptured. In current clinical practice, AAA diameter remains the most 
widely used criterion for intervention to prevent rupture[1]. In the era of personalized medicine, there 
is a need to go beyond this one-size-fits-all approach[2]. Furthermore, AAA is associated with 
significant heritability and complex mutational heterogeneity[3]. Moreover, approximately 30% of 
AAA patients are at high cardiovascular risk, necessitating optimal cardiovascular risk management[4]. 
In the VASCULAID-RETRO-AAA study, we aim to integrate multimodal information including clinical, 
imaging, and multi-omics data in robust machine learning pipelines to go beyond this one-size-fits-all 
approach and classify patients at high risk for AAA progression and cardiovascular disease.  
 

Material and methods  
The VASCULAID-RETRO-AAA study aims to leverage retrospectively collected data of 5,000 AAA 
patients from six European clinical centers to develop multimodal AI-algorithms. A data infrastructure 
network is established to collect standardized clinical and imaging data from all centers. This phase 
included developing a consensus-based variable set to select relevant variables from a clinical and 
ethical perspective. Moreover, blood and plasma samples from 250 patients from existing biobanks 
will be used for -omics analyses. Additionally, external databases and biobanks such as UK biobank, 
Finngen, Hunt, Kaiser Permanente are explored to enrich the VASCUL-AID database.  
 
As part of this study, geometric deep learning models are trained on previously developed automated 
AAA segmentations to estimate hemodynamic parameters such as pressure and wall shear stress. 
Mass spectroscopy-based proteomic and lipidomic analysis of plasma samples will be undertaken to 
identify differentially secreted proteins and classify them into high vs low AAA progression. Targeted 
genotyping will be done to identify the SNP information at previously identified risk loci. Finally, 
clinical data, data from medical imaging analyses, and multi-omics data will be integrated to be used 
as input to multimodal prediction models based on graph neural networks (GNNs). The structure of 
the multimodal GNN is designed using a pilot-dataset.  
 

Results  
A robust data infrastructure has been established that incorporates Castor EDC for clinical data 
collection and a Health-RI XNAT-server for imaging data storage and retrieval. These platforms are 
operational and collection of clinical and imaging (CT, US, MRI) data of all 5,000 identified AAA patients 
has started. Through collaborative efforts, a comprehensive consensus-based variable list, of around 
300 potential clinical input variables for the prediction models, has been formulated. Moreover, the 
R10-version of Finngen biobank data[5] with 4083 AAA patients is accessed for genomic analyses. 
 
An automatic segmentation of the whole arterial tree to model complex vascular structures has been 
developed within our consortium[6]. Proteomic and genomic analysis of blood samples is currently 
ongoing. A knowledge graph of known gene associations with AAA including 590 genes and 141 
significant-loci associated with AAA progression has been constructed based on literature review and 
open-source databases[7]. 
 



A pilot-dataset was used to create the preliminary design of the multimodal GNN model. Each patient 
will be represented as a node in a cohort level graph representation and each node embedding is 
derived from modality specific models. For instance, to generate aggregate feature inputs of each 
modality, the data is converted to a d-dimensional vector representation and fused together with 
other modalities. This model will be optimized to generate overall risk scores or probabilities for AAA 
progression and the risk of cardiovascular events. 
 

Discussion and Conclusion  
Extensive AI analysis of imaging and clinical patient data will be integrated with omics data for the first 
time to predict progression of AAA. Deep graph neural network models based on multimodal data will 
become a critical tool in advancing precision medicine.  
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Key information: 

1. Research question: Spinal cord ischemia (SCI) after fenestrated and branched endovascular 
aneurysm repair (F/B-EVAR) remains a rare but devastating complication. The aim of this study 
was to evaluate the performance of classifiers for the prediction of SCI based on clinical and 
preoperative imaging-derived parameters.  

2. Findings: The trained classifiers demonstrate potential for prediction of SCI after F/B-EVAR 
based on clinical and preoperative imaging-derived parameters. 

3. Meaning: Preoperative prediction of SCI after F/B-EVAR could aid in optimization of the 
treatment strategy for patients with a thoracoabdominal aortic aneurysm to reduce the risk of 
SCI.  

 



MANUSCRIPT (included in the word count) 

Introduction  

The introduction of fenestrated and branched endovascular aneurysm repair (F/B-EVAR) has increased 
the number of aneurysm varieties that can be treated in a minimally invasive fashion. Despite improved 
post-operative outcomes over the years, spinal cord ischemia (SCI), potentially leading to paraplegia, 
remains a devastating complication. SCI is characterized by a multifactorial etiology, making it difficult for 
clinicians to stratify high and low-risk patients and promptly apply preventive measures. Sarcopenia is 
characterized by skeletal muscle loss, and its severity is commonly assessed based on two-dimensional 
psoas muscle measurements on the axial computed tomography (CT) plane. Sarcopenia has, amongst 
others, been suggested as a predisposing factor for SCI.1 

This study aimed to classify SCI and non-SCI patients using a machine learning model based on clinical 
features and sarcopenia-related anatomical features derived automatically from CT. Preoperative 
prediction of SCI could potentially alter the treatment strategy and benefit the patient by lowering the 
risk of SCI. 

Material and methods 

Within our international multicenter consortium, patient characteristics, preoperative CT, and post-
operative SCI status were collected for patients who underwent F/B-EVAR for a thoracoabdominal aortic 
aneurysm. In all centers, patients with SCI were selected and matched with non-SCI patients. 

Iliopsoas muscle segmentations were automatically derived from the preoperative CT as a surrogate for 
sarcopenia using the open-source TotalSegmentator tool.2,3 Two-dimensional (2D) conventional 
measurements were obtained from the segmentations at the level of vertebra L3 based on the vertebra 
labels. The collected 2D parameters were the psoas muscle area at vertebra level L3 [cm2], attenuation of 
the area (Hounsfield Units, [HU]), and lean psoas muscle area (LPMA), measured by multiplication of the 
psoas muscle area and attenuation [cm2*HU]. Three-dimensional collected parameters were the iliopsoas 
muscle volume [cm3], iliopsoas muscle volume attenuation [HU], and lean iliopsoas muscle volume (LIMV) 
in [cm3*HU].  

The collected clinical parameters included the patient’s age, sex, BMI, ASA-classification, glomerular 
filtration rate, aneurysm classification, and maximum aneurysm diameter. 

Multiple machine learning models were trained to predict SCI after F/B-EVAR based on the sarcopenia-
related and clinical parameters. The trained models were Gaussian Naïves Bayes Classifier, Random 
Forest, Logistic Regression, and XG Boost. The performances of the trained models were based on the 
mean area under the curve (AUC) of the receiver operating characteristic (ROC) curve in a 5-fold cross-
validation.  

Results 

Two hundred and five patients were included (mean age of 72.5 ± 7.7 years, 71.7% male) with 148 (72.1%) 
patients treated for a Crawford I-IV thoracoabdominal aortic aneurysm and 57 (27.8%) for a 
juxta/pararenal abdominal aortic aneurysm. Sixty patients (29.2%) had SCI postoperatively.  



The best-performing machine learning model was the Gaussian Naïves Bayes classifier with a mean AUC 
of 0.82 ± 0.10 in the 5-fold cross-validation. The Random Forest reached an AUC of  0.70 ± 0.09, logistic 
regression reached an AUC of 0.79 ± 0.08 and the XG Boost classifier obtained an AUC of 0.73 ± 0.10. 

Discussion and Conclusion 

Preoperative SCI risk stratification remains a challenge for patients treated with F/B-EVAR for a 
thoracoabdominal aortic aneurysm. The trained machine learning models demonstrated promising 
results for the prediction of SCI based on sarcopenia-related and clinical parameters. These results suggest 
that machine learning models could potentially aid the physicians in better SCI risk stratification, and 
thereby enhance optimization of the treatment strategy. The current study was limited by the number of 
patients. Further research should focus on the inclusion of more patients and the addition of more 
imaging-derived and clinical parameters to enhance the performance of the machine learning models. 
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1.  Research question: Do morphological subpopulations exist within H&E images of 
CD8+ T cells?   

2.  Findings: Feature extraction using the UNI model followed by hierarchical 
clustering demonstrated existence of clusters in CD8+ T cells. 

3.  Meaning: These clusters have important implications for development of machine 
learning models for identification of CD8+ T cells subsets in tumour H&E slides, 
allowing for characterisation of the immune profile of tumours without additional 
immunostaining. 

  

 
  

mailto:mads2@cam.ac.uk


MANUSCRIPT  

Introduction 

H&E2.01 refers to  the identification of biomarker-expressing cells directly from hematoxylin 
and eosin (H&E) images through machine learning (ML) methods, without the need for 
immunohistological staining2. Such  models are generally binary classification models3,4. 
However, morphologically distinct subpopulations may exist within the biomarker-positive 
class that would affect the performance of binary classification models and multiclass models 
may be more appropriate, Here, we demonstrate that morphologically sub-populations can be 
detected in H&E images of CD8+ cells and that model prediction performance increases when 
a multi-classification model is used to identify all CD8+ subpopulations and CD8+  cells. 

Material and methods 

We employed H&E images obtained from four colorectal cancer tumors, which had been 
previously immunostained for CD8+. We utilized the UNI model, a neural network model pre-
trained on 100 million pathology images5, and the Prov-GigaPath model, pretrained on 1.3 
billion image tiles,6 to extract features from 100 by 100 pixel patches of cells. Subsequently, 
we employed unsupervised hierarchical clustering to identify potential cell clusters within the 
CD8+ population (Figure 1A). The features extracted were then used to train extreme gradient 
boosting (XGBoost) machine learning models to classify patches as CD8+ or CD8- with 5-fold 
cross-validation (CV). Both a binary and multi-class model were trained and tested on the same 
training and testing datasets, based on a random 80:20 train:test split. 

Results 

Our analysis revealed the presence of distinct clusters within the CD8+ population across the 
colorectal cancer tumors, irrespective of tumor origin (Figure 1B-D). Furthermore, we 
demonstrated the robustness of these findings, even when employing smaller image sizes of up 
to 60 by 60 pixels. Both the UNI and Prov-GigaPath identified features that suggested six 
distinct clusters within the CD8+ images, with 52.3% concordance between both models, 
compared to 1 in 6 or 16.6% for chance, with most errors being at boundaries between both 
clusters (Figure 1C). The features extracted by the UNI vision transformer could be used to 
train an extreme gradient boosting (XGBoost) binary model with an AUROC score of 
0.870±0.0097 (mean±SD of 5 CV iterations), whereas a multi-class model that predicted CD8+ 

subpopulations and CD8- cells had an AUROC score of 0.875±0.0086 (Figure 1E), Similarly, 
the Prov-GigaPath model had an accuracy of 0.875±0.0037 and 0.887±0.0018 respectively.  

Discussion and Conclusion 

The discovery of morphologically distinct subpopulations within CD8+ cells of H&E cell 
patches and the higher AUROC score achieved by the multi-classification model that captured 
all subtypes of the positive class indicates that multi-classification may  be more appropriate 
than binary classification for H&E cell prediction models. Limitations of this work include the 
small number of tumors, four, that only one type of tumor, colorectal, was studied, and that 
only one biomarker was examined. We will address these limitations in future work along with 
testing other feature extraction methods. 
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Figure 1: (A) Schematic of process of obtaining patches, feature extraction and clustering. (B) 
Hierarchical clustering dendrogram depicting six clusters obtained from both models. (C) 
UMAP Plots with hierarchical clustering results on top, and concordance of both clustering 
methods below. (D) ROC Plots of binary and multi-class classification models showing 
marginally increased accuracy for multiclass classifiers  
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Key information: 

1. Research question:  

The microscopic evaluation of lymph nodes for potential metastases can be a time-consuming 
and laborious task in the routine diagnosis of colorectal cancer. Can a deep learning model be 
used in a real-life clinical setting to assist pathologists in the diagnosis of lymph node 
metastases in cases of colorectal cancer?  

2. Findings:  

To assist pathologists, we have recently developed and integrated a deep learning-based 
model for detecting lymph node metastases in colorectal cancer (CRC), called MetAssist. In 
this clinical quality control setup, MetAssist helped to improve diagnosis sensitivity from 98% 
to 100%.  

3. Meaning:  

The pathologists have found the clinical integration of MetAssist to be supportive and 
provided valuable comments to improve the workflow.  Under prospective clinical conditions, 
our analysis shows that MetAssist performed extremely well.  
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MANUSCRIPT  

Introduction 

The N-stage of a patient with colorectal cancer (CRC) is determined by the number of metastatic lymph 
nodes, including micro-metastases between 0.2 and 2.0 mm1. A minimum of 12 lymph nodes should be 
examined, although the actual number of resected and examined lymph nodes is often higher. The 
microscopic assessment of lymph node tissue for potential metastases can be a time-consuming task in 
routine diagnosis. To assist pathologists, we have recently developed and validated a deep learning-based 
model for the detection lymph node metastases in colorectal cancer (CRC), details for model 
development, architecture, training, and validation can be found here2,3. The model works in three steps: 
(1) lymph node tissues are first segmented on a low-resolution whole slide image (WSI), (2) segmented 
lymph node tissues are screened for metastases on higher resolution patches and (3) finally overlays of 
potential metastatic regions are generated and the patch level scores are aggregated to predict the slide 
score (e.g. positive or negative). For clinical quality control, the model has been integrated into the 
institute's diagnostic setup and has been named “MetAssist”. In this study, we aim to assess the 
prospective accuracy and feasibility of MetAssist when used by expert pathologists in the clinical practice 
for CRC cases in a tertiary care hospital. 

Material and methods 

In clinical pathology settings, the image management system is often used to deploy AI (artificial 
intelligence) algorithms. However, in this study, we have integrated an AI model for lymph node 
metastasis screening in the simplest form. Pathologists can immediately use the AI algorithms without 
any technical barriers. Our proposed integration pipeline uses a remote high-performance cluster (HPC) 
at the university with an automated workflow between the institute and the HPC, as well as a simplified 
web interface for pathologists’ interaction, result visualisation and comparison, review, and feedback (see 
Figure 1). After scanning lymph node slides with the institute's digital scanner, the automated workflow 
copies the WSI to the HPC and runs the model using a GPU node. Once the computational job is complete, 
the results are sent back to the institute in the form of overlays and WSI slide level scores for display on 
the web interface. Meanwhile, pathologists perform microscopic analysis on the glass slides to ensure 
that no case is left without human review and report their slide scores to the web interface. As the scores 
are fed in by the pathologists, the interface interactively displays similarities or differences and prompts 
a review request for discrepant cases by highlighting case in the interface. Pathologists can quickly review 
and leave comments if there is any false call, both from pathologist and the model. A total of 35 CRC 
resected specimens (427 slides with locoregional lymph nodes) have been diagnosed by 14 pathologists 
in this setting, who compared their diagnosis with the MetAssist predictions and reviewed cases with 
discrepancy. 

Results 

The technical implementation of the workflow proved to be stable. The web interface and user experience 
were also well-received and accepted by the pathologists. In terms of clinical diagnosis, the sensitivity and 
specificity of MetAssist compared to pathologists were approximately 0.981 and 0.769, respectively. 
Similarly, the accuracy (ACC) and the area under the curve of the receiver operating characteristic curve 
(AUCROC) were 79.6% and 0.875, respectively. The disparities in negative slides could be attributed to 
various tissue artefacts, mainly tissue folds and fragments of primary cancer that were detected, but 



outside of lymph nodes. The pathologists commented on each false positive. The MetAssist indications 
prompted a review of the slides. As a result, the final AI-assisted pathology diagnostic sensitivity and 
specificity were improved to 1.0 and 0.770, respectively. Correspondingly, the ACC and AUCROC were 
79.8% and 0.885 respectively. 

Discussion and Conclusion 

Overall, the pathologists have found the integration of MetAssist to be beneficial. They also provided 
valuable comments to improve both the model and the integration process. Under prospective clinical 
conditions, our analysis shows that MetAssist performed extremely well, reaching a sensitivity of 100%. 
Therefore, our workflow meets the desired diagnostics performance. At present, we are working on 
improving the model on false predictions, in particular to improve the segmentation step considering 
tissue folds and floating parts of primary tissue. In the future, we have plans to extend the model to other 
lymph node tissue types and to integrate other algorithms currently under development for more clinical 
applications.  
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Figure 1: The block diagram shows all the steps and processes involved in the integration of MetAssist for 
Pathologists into the institute's lab. [LIS: laboratory information system, WSI: whole slide image, HPC: 
high-performance cluster] 
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Key information: 

1. Research question: Does a deep learning-base model, using real-time segmentation, assist in 
intraoperative navigation during minimally invasive liver surgery? 

2. Findings: The MiT-B3 model demonstrated robust performance for segmenting avascular planes 
and vascular structures, maintaining similar performance in external validation with multicenter 
video data. 

3. Meaning: This study indicates that deep learning could enhance intraoperative navigation for 
liver mobilization in minimally invasive liver surgery, potentially increasing the adoption and 
safety of the procedures. 

  

mailto:ngnyou@gmail.com


MANUSCRIPT (582 words) 

Introduction  

With the introduction of laparoscopic surgery, there has been a paradigm shift from open surgery to 

minimally invasive surgery (MIS) in many areas of surgery1. In liver surgery, the first laparoscopic wedge 

resection was reported in 1991, followed by laparoscopic major hepatectomy in the 2000s and 

laparoscopic donor hepatectomy in the 2010s2-4. Despite these advancements, minimally invasive liver 

surgery (MILS) has not seen global widespread adoption like other minimally invasive procedures1. This 

is because there is still a significant learning curve to be overcome to achieve proficiency in major MILS5. 

This study was designed to explore the potential of artificial intelligence (AI) to assist in the performance 

of major MILS by providing intraoperative navigation through real-time segmentation of the safe plane 

for dissection. 

Material and methods 

Data collection: A total of 48 videos of pure laparoscopic donor right hepatectomy (PLDRH) were 

collected from three institutions: Samsung Medical Center (SMC, n=40), Myong-Ji Hospital (MJH, n=5), 

and Yeungnam University Medical Center (YUMC, n=3). Frames were extracted every 10 seconds during 

the right liver mobilization process, resulting in 2,753 frames for analysis. 

Annotation process: Three surgical scopists(registered nurses) annotated the avascular plane and 

vessels (inferior vena cava, inferior hepatic vein, short hepatic vein, and diaphragm vein) in these frames 

(Figure 1). Subsequently, three liver surgeons reviewed and revised these annotations for accuracy. 

Model development: The segmentation model was developed using the U-Net architecture, with 

different encoders for performance comparison: ResNet and EfficientNet for convolutional neural 

network (CNN) architectures, and MiT (Mix Transformer) from SegFormer for transformer-based 



encoding6-9. All images were resized to 256 x 256 pixels and underwent z-normalization for each 

channel. Data augmentation techniques such as rotation, flip, and transposition were applied to 

enhance model robustness.  

Training and validation: The model was trained over 100 epochs with a batch size 8 using the AdamW 

optimizer and a learning rate of 1e-4. The Dice CE loss function, which combines the benefits of cross-

entropy and the Dice coefficient while excluding background loss, was employed. A five-fold cross-

validation was performed using the 40 videos from SMC. External validation was conducted with 8 

videos from MJH and YUMC.  

Performance Evaluation: Model performance was assessed using metrics such as the Dice similarity 

coefficient (DSC), intersection of union (IOU), precision, recall, and specificity. 

Results 

The performance of each model, trained and validated using 40 surgical videos from SMC, is presented 

in Figure 3 as the parameter size varies. Specifically, the models with approximately 45M parameter are 

summarized in the Table1. Among the tested models, the MiT-B3 model demonstrated superior 

performance. In the internal validation, it achieved a DSC of 0.680 ± 0.019 for the avascular plane and 

0.704±0.010 for the vascular structures. Upon application to the eight external datasets, the model 

maintained robust performance, showing a DSC of 0.656±0.003 for the avascular plane and 0.707±0.010 

for the vascular structure (Table2). 

Discussion and Conclusion 

This study validated the use of artificial intelligence (AI), particularly the MiT-B3 model, for 

intraoperative navigation in MILS, demonstrating its effectiveness in accurately segmenting key 

anatomical structures. Its robust performance across different institution suggests potential for wider 

clinical application, enhancing surgical precision and safety. Despite promising results, the study’s focus 



on PLDRH and a small sample size limits generalizability. Future studies should aim to include a larger, 

more diverse set of videos from various surgical procedures and institution to enhance the robustness 

and generalizability of the AI model. In conclusion, this study highlights the potential of deep learning to 

improve intraoperative decisions, enhancing precision and safety. 
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APPENDIX 

Figure1. Pixel level segmentation of avascular plane and vascular structures of ground truth 

 

  



Figure2. Internal and external validation  

 

  



Figure3. Performance comparison for the models 

 

  



Figure4. Results of segmentation for avascular plane and vascular structures 

 

  



Table 1. Comparative performance of the models for internal and external validation with 8:2 datasplit 

Internal validation 
 DSC IOU Precision Recall Specificity 
MiT-b3 Avascular 

plane 
0.661 0.527 0.699 0.698 0.979 

Vascular 
structures 

0.713 0.643 0.673 0.652 0.990 

EfficientNet-B6 Avascular 
plane 

0.639 0.505 0.701 0.657 0.981 

Vascular 
structures 

0.674 0.609 0.675 0.502 0.989 

ResNet101 Avascular 
plane 

0.648 0.518 0.656 0.729 0.972 

Vascular 
structures 

0.637 0.567 0.583 0.617 0.988 

External validation 
 DSC IOU Precision Recall Specificity  
MiT-b3 Avascular 

plane 
0.654 0.512 0.606 0.788 0.965 

 Vascular 
structures 

0.711 0.662 0.640 0.507 0.994 

EfficientNet-B6 Avascular 
plane 

0.641 0.499 0.622 0.741 0.970 

 Vascular 
structures 

0.701 0.662 0.711 0.340 0.995 

ResNet101 Avascular 
plane 

0.602 0.463 0.562 0.747 0.958 

 Vascular 
structures 

0.677 0.636 0.691 0.369 0.996 

DSC, Dice similarity coefficient; IOU, intersection of union 

  



Table 2. DSC of 5-fold cross validation and external test data for the MiT-b3 

 1st 
fold 

2nd 
fold 

3rd 
fold 

4th 
fold 

5th 
fold 

Average 
(SD) 

External 
validation (SD) 

MiT-
b3 

Avascular 
plane 

0.661 0.697 0.705 0.656 0.683 0.680 
(0.019) 

0.656 (0.003) 

Vascular 
structures 

0.713 0.734 0.741 0.660 0.671 0.704 
(0.032) 

0.707 (0.010) 

DSC, Dice similarity coefficient; SD, Standard deviation 

  



Table S1. Hyperparameters 

Items Value 

Network 
Architecture U-Net 

Backbone Network MiT-B0~B5, EfficientNet-B0~B7, All of the encoders were pretrained with 
ImageNet 

Image Size 256 x 256 x 3 

Batch Size 8 

Learning Rate 1e-04 

Number of Epochs 100  

Optimizer AdamW 

Loss Function 
Combination of Dice Loss and Cross-entropy Loss: 

Dice loss + Cross-entropy loss (without background) 

Number of Classes 3 (Activation Layer: Softmax Function) 

Augmentation 

At Training 

# Normalization 

 - Normal distribution (mean, std) 

 - Resize (256 x 256) 

# Geometric transformation 

 - RandomRotate90 

 - Flip 

 - Transpose 

 - ShiftScaleRotate 

At Test (Inference) 

# Normalization 

 - Normal distribution (mean, std) 

 - Resize (256 x 256) 
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Key information: 

1. Research question: Can medical students and core trainees achieve accurate instance 

segmentation of instruments using MedSAM?  

2. Findings: A high dice similarity coefficient was achieved using MedSAM for instance 

segmentation. There was a significantly higher average time to completion of the annotation 

using this tool.  

3. Meaning: MedSAM used by junior doctors shows good accuracy in instance segmentation of 

common surgical instruments. As such, it is a possible tool to scale high quality annotation of 

surgical video. Further work is warranted to reduce computational requirements. 
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Introduction  

Currently, the best performing instance segmentation algorithms in computer vision employ 

supervised training. It is very difficult to extend these methods to surgical video analysis, given constraints 

in surgeon hours and expertise. Therefore, it is desirable to the ability to scale the ability to create high 

quality annotations.  

MedSAM (1) is a state-of-the-art computer vision model which provides an open-source graphic 

user interface (GUI) to perform semantic segmentation of medical images. It has been trained on 1 570 

263 medical images, of which 27095 (1.7%) are laparoscopic images. To our knowledge, this model has 

not been validated in the task of instance segmentation. We aim to test this model on the task of instance 

segmentation of instruments used during laparoscopic cholecystectomy through the development of an 

open-source graphic user interface.  

 

Material and methods 

The GUI to deploy MedSAM was edited to add the following functionalities: labelling, the use of 

point-based segmentation, timestamping and the user experience optimised. This tool was used to 

segment instances of the various instruments used in laparoscopic cholecystectomy: dissector, grasper, 

hook, clipper, scissors, irrigator, and specimen bag, in an in-house dataset. Ground truth was annotated 

by a senior trainee using the Pixel Annotation Tool. MedSAM was used through the custom user interface 

by one medical student and one core trainee.  

Annotation accuracy was measured through the Dice Similarity Coefficient according to the 

recommendations by Maier Hein et. Al (2), for every instrument class and compared. Number of missed 

annotations is counted per class.  

 

Results 

A total of 961 images were analysed, from 5 patients operated in Lisbon as part of the Surg_Cloud 

project. The number of instruments per image was as follows: 1 in 411 images, 2 in 481 and 3 in 23 images. 

The detailed breakdown of the similarity assessment can be seen in table 1 and figure 1. Manual 

annotation required approximately 37 seconds per image. Annotation using the MedSAM GUI on a cpu 

required approximately 60 seconds per image, of which approximately 20.2 seconds were for image 

encoding. 

 

Discussion and Conclusion 

The use of MedSAM GUI shows promise due to the high similarity coefficients achieved by doctors 

with less experience in identifying instruments. While for instruments with very constant shape this was 

uniform, a bigger variability was present for the fenestrated grasper, probably in relation with the change 

of the instrument shape. The use of the GUI is encouraged by providing the code to use this tool.  



The difference in time taken for annotation is a clear limitation, which we hypothesize to be due to 

compute requirements. The deployment of these models in edge devices is a significant bottleneck. It 

warrants further study on the impact of GUI optimisation and different annotation instructions. 

.  
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Figure 1: boxplot of the Dice similarity coefficient scores for each instrument 
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1. Research question:  Can a user-friendly video-based AR surgical navigation system designed for 
ease of adoption by novice users address the challenges hindering AR adoption in Indian 
laparoscopic surgeries? 

2. Findings: The study found surgeons in India face cost, user experience, and comfort barriers to 
AR adoption. Our video-based AR tool showed promise for ease of use, particularly in deep 
laparoscopic surgeries. 

3. Meaning: The developed user-friendly video-based AR tool for laparoscopic surgery 
demonstrated promising initial usability, particularly for deep-seated lesions, suggesting its 
potential to address these identified hurdles and facilitate broader AR integration. 
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Introduction  

Augmented reality (AR) in surgery equips doctors with real-time visualizations of a patient's internal 
structures, guiding their decisions with the help of invaluable data. AR facilitates meticulous surgical 
planning and rehearsal, allowing surgeons to strategize solutions for potential complications virtually 
[1]. Although optical see-through methods of AR have gained increasing popularity, the cost involved, 
lack of real-world stimulus, and the discomfort associated with wearing AR/VR systems have led to a low 
level of acceptance among surgeons [2]. A previous clinical feasibility study by Dennler C et al. on 
hololens-based AR system utilizing a questionnaire based study showed that impaired sight caused by 
the device and surgical steps requiring other instruments were the main hindering factors for 
integration of the wearable systems in surgery. Keeping this in mind, a video-based AR system can be 
preferable as it ensures little effort for the surgeon to adapt to the technology, while a computer system 
does most of the work before the surgery. For widespread inception in a new setting, it becomes 
essential to first assess the requirements and limitations faced by the first line users and to address 
them. Previous studies have reported the preferences of surgeons for different visualization techniques 
and assessed their opinion of potential impact of surgical AR [3]. The goal of this study was to analyze 
the awareness and challenges related to AR adoption in surgical practice in India and to develop an 
intuitive user-friendly video-based AR tool experimented by novice users for a patient-specific surgical 
navigation in laparoscopic surgeries.  

Material and methods 

A cross-sectional user-study was conducted to analyze the adoption and fears relating to uptake of the 
AR systems among Indian doctors. It was a pilot study constituting a small study group of (36?) 23 
participants, includingphysicians researching in technology(n=16), ,residents in training (n=9)  and 
surgeons (n=5). Based on the feedback provided, especially the barriers towards adoption of AR, a 
simplified working phantom model of an AR surgical navigation system in the preclinical laboratory was 
developed and experimented by healthcare professionals. A similar setup is reported for performance 
evaluation of trainee surgeons in a phantom model with a Laparoscopic Augmentation System (LAS) 
added with a computer connected to a tracking system [4].  Our workflow was based on the video-based 
AR system and used the existing laparoscopy monitor to provide relevant anatomical information. The 
3D rendered model of the organ of interest and the lesions’ information was available to the doctor with 
keyboard-based controls as shown in Figure 1. It was coupled with a modified U-Net segmentation 
model [5] that provided object tracking of the laparoscopy instruments to ensure that the instrument 
did not enter the danger zone, or the area around the critical structures. Warnings regarding the surgical 
procedure were displayed on the laparoscopy monitor. 

Results 

Adapted Technology Readiness Index (TRI) was calculated to assess the perceived readiness of the 
present healthcare system to adopt AR technology in surgery by different predictor variables as 
visualized in Figure 2. ANOVA analysis gave a p-value of (>0.05) for each of the questions, proving that 
there is no significant difference in TRI means of the three subgroups (Table 1). Although statistically 



insignificant , there were differences in subjective opinions among different subgroups of the study. 
Researchers were worried about cost and infrastructure, residents had moderate concerns about 
usability and cost, and surgeons prioritized cost-effectiveness but were enthusiastic about AR for 
training.  After experimenting with the developed simulation setup, some of the healthcare 
professionals expressed the ease of use of the setup and confirmed its high usability in surgeries 
involving deep or subsurface lesions. 

Discussion and Conclusion 

This study explores key obstacles hindering the adoption of AR in Indian surgical setting and gives a 
potential base level solutions targeted to the novice users. The proposed model of the video-based AR 
system got a positive feedback from the participants of the study. An intuitive interface for all skill 
levels, combined with minimal modifications to existing surgical equipment, could accelerate the 
practical integration of AR technology. Future research should involve larger, quantitative user trials 
with case-specific adaptations of the simulation model. 
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APPENDIX 

Figures and Pictures 
 

   

Figure 1: Workflow and setup of the system. (1) Phantom model to simulate the organ if interest (2) 
Setup which includes the laparoscopy simulator trainer, laparoscopy monitor connected to a processing 
unit, and laparoscopy instruments (3) U-Net segmentation algorithm used on the live video feed (4) (a) 
Intraoperative view on laparoscopy monitor of the edge-highlighted target organ superimposed on the 
surgical field of view (b) The segmented mask for object tracking by the AI algorithm  

 

 

Figure 2: Predictor variables for AR variables assessed by TRI (Technology Readiness Index) 

 



Tables  
Table 1: Analysis of Variance (ANOVA) analysis for evaluations of the technological preparedness 

Component of Technology 
Readiness 

F-Statistic P-Value 

Ease of Use  1.118 0.342 
Accuracy Enhancement 1.813 0.183 
Infrastructure Support 0.697 0.507 
Cost Effectiveness 1.684 0.205 
Training And Education 0.126 0.882 

 

There are no statistically significant differences among the mean scores of the three groups (Researcher, 
Resident, Surgeon) in any of the investigated categories. This indicates that the views or evaluations of 
the technological preparedness characteristics addressed in the survey are comparable among the three 
categories. 
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Key information: 

1. Research question: Can robotic pedicle screw trajectories be accurately, autonomously executed 
based on a 3D reconstructed ultrasound navigation by the FAROS robotic system? 

2. Findings: In most cases, pedicle screw trajectories can be drilled with clinical acceptance. 
Further, ultrasound can achieve accurate results for reconstructing anatomical features to 
navigate said trajectories. 

3. Meaning: The FAROS system shows promise for future robotic autonomous applications. 



MANUSCRIPT  

Introduction 

Due to the complex spinal anatomy and the need for high precision, existing spinal navigation systems 
utilize ionizing radiation to generate high-resolution bone imaging. However, these systems result in a 
substantial radiation burden to patients and healthcare professionals. In the European Union project 
FAROS, we aimed to leverage non-visual sensing technology to improve the autonomy of robotic pedicle 
screw (PS) drilling while eliminating the need for ionizing radiation.1 We report the results for final 
validation, including ex-vivo human and in-vivo animal experiments. 

Material and methods 

The FAROS robotic system integrates a robotic arm (LBR-Med-7, KUKA, Augsburg, Germany) with 
ultrasound (US) (ML6-15 (15MHz) linear probe, GE Logiq, GE Healthcare, Illinois, USA) for anatomy 
reconstruction and trajectory planning, optical breathing compensation, a robotic drill, and conductivity 
sensors (DSG, SpineGuard, Paris, France) for real-time breach detection of the spinal canal while 
drilling.2 The FAROS robotic system is based on several steps for robotic spine surgery. Initially, fiducial 
markers (Clear Guide Medical, Baltimore, MD, USA) were placed on the anatomy for motion tracking 
using an RGBD camera (ZED-2i, Stereolabs, Paris, France). Next, a US probe was attached to a robotic 
arm to scan the entire spine using a pre-defined path (Figure 1).3,4 The bone anatomy of the 2D US 
images was segmented with U-NET, 3D-reconstructed, and ICP-registered with preoperative CT data 
containing the preoperative planning information.5 The end effectors' US probe was then replaced by a 
drilling tool (Figure 2). After spine exposure, the system drilled autonomously to the preoperatively 
specified depth. During drilling, DSG monitors conductivity changes to stop drilling if a spinal canal 
breach is detected. 

The following validation studies were performed: 

1. Ex-vivo human validation: 
Ten PS trajectories were planned on L1 to L5 vertebrae using preoperative 3D CT models. 
After executing the workflow, the accuracy of the drilled canals was assessed surgically and 
radiologically through pedicle palpation and CT image evaluation. The placements were 
categorized based on their proximity to pedicle walls using the Gertzbein-Robbins (GR) 
classification.6 
 

2. In-vivo animal validation: 
The reliability of the DSG technology was tested on live animals due to the unreliable tissue 
conductivity signals in ex-vivo specimens. This involved using an in-vivo porcine specimen to 
compare the DSGs' breach detection capabilities with postoperative CT scans. 
 

3. The accuracy of the 3D US reconstruction: 
This was evaluated in separate ex-vivo human experiments. A 200 x 100 mm skin area was 
scanned using an S-shaped US protocol to cover vertebrae from L1 to L5, repeated thrice. 
The US images were registered with a preoperative CT model using an iterative closest point 
algorithm to evaluate the reconstruction quality of the anatomical features.7,8 
 



Results 

In the ex-vivo system validation, seven (77.78%) screws were placed with GR grade A, while one screw 
each achieved grades B and C (Table 1, Figure 3). One screw was excluded due to soft tissue proximity 
and surgical approach issues. The US navigation faced challenges in the in-vivo experiments due to 
increased spine curvature and breathing. Time constraints led to skipping preparation steps, resulting in 
technical errors. The separate evaluation of the 3D US reconstruction accuracy revealed an error of 1.74 
± 0.89 mm.3 

Discussion and Conclusion 

The system demonstrated clinically acceptable outcomes in 8 of 9 pedicle drillings, underscoring its 
potential for future autonomous robotic applications in spine surgery. Despite the promising results, the 
prototype is still in its developmental phase, with drawbacks like lengthy setup and preparation times 
posing challenges for immediate clinical adoption. Efforts are focused on refining the preparation 
process and advancing toward a minimally invasive technique to fully leverage the systems' capabilities 
and enhance their clinical applicability. 
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Figure 1: The FAROS robotic system with the robotic ultrasound end effector attached. 



 

Figure 2: The FAROS robotic system with the robotic drill attached and fiducial markers placed for the 
optical (RGBD) camera. 

 



 

Figure 3: Placed pedicle screws after autonomous robotic drilling from L1 to L5. Thoracic screw 
placement was only performed for system training and not part of the validation experiment. 

 

Table 1. Gertzbein-Robbins classification for the ex-vivo pedicle drilling experiments. 

Pedicle drilling trajectories Gertzbein-Robbins Classification 
L1 right  A  

L1 left A 

L2 right A 

L2 left A 

L3 right C 

L3 left B 

L4 right A 

L4 left A 

L5 right A 

L5 left Excluded due to soft tissue proximity/ 
surgical approach issues 
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Key Information 
Research Question: The purpose of this study is to develop a deep learning artificial intelligence 
technique for the automated measurement of posterior tibial slope (PTS) from standard lateral 
knee radiographs. 
Findings: PTS corresponds to increased rate of graft failure in ACL deficient knees. Validated 
human measurement is inefficient and prone to interobserver variability. 
Meaning: An accurate and reliable deep learning computer vision algorithm was developed to 
automate the measurement of PTS on lateral knee radiographs. This tool demonstrated good 
agreement with human annotations and  will be deployed for clinical use on an institution-wide 
basis. This represents an effective clinical adjunct for the measurement of PTS as part of the 
preoperative assessment of ACL-injured patients. 
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Abstract: 

Background: 

Anterior cruciate ligament reconstruction (ACLR) generally leads to favorable overall outcomes; 

however, re-current ACL injury (ipsilateral or contralateral) may occur in up to 20-30% of cases1,4 An 

increased posterior tibial slope (PTS) corresponds with an increased risk of graft failure following 

anterior cruciate ligament (ACL) reconstruction. 5 Validated methods of manual PTS measurements are 

subject to potential interobserver variability and can be inefficient on large datasets. Thus, the purpose 

of this study is to develop a deep learning artificial intelligence technique for the automated 

measurement of PTS from standard lateral knee radiographs. 

Methods: 

A deep learning U-Net model was developed on a cohort of 300 postoperative short leg lateral 

radiographs from ACLR patients to segment the tibial shaft, tibial joint surface, and tibial tuberosity. The 

model was trained via a random split following an 80:20 train-validation scheme. Masks for training 

images were manually segmented and the model was trained for 400 epochs. An image processing 

pipeline was then deployed to annotate and measure the PTS using the predicted segmentation masks 

by calculating angle distended by a best-fit line through the tibial shaft mask and a line across the top of 

the tibial joint surface. Finally, the performance of this combined pipeline was compared to human 

measurements performed by two study personnel using a previously validated manual technique for 

measuring PTS on short leg lateral radiographs on an independent test-set of 90 images. An example of 

this pipeline and  the produced masks can be found in Figure 1. 

Results: 

The U-Net semantic segmentation model achieved a mean Dice similarity coefficient of 0.885 on the 

validation cohort. The mean difference between human-made and computer-vision measurements via a 

one-sided t-test was 1.92⁰ (σ = 2.81⁰, P=0.24). Extreme disagreements between human and machine 



measurements as defined by differences ≥5⁰ occurred less than 5% of the time. The model was 

incorporated into a web-based digital application front-end for demonstration purposes which can 

provide measurement of a single uploaded image in portable network graphics format in less than 5 

seconds. 

Discussion/Conclusion:  

PTS has long been established as a crucial measurement that has significant implications for knee 

biomechanics, and increased slope has specifically been correlated to an increased risk of graft failure 

following ACLR5. Therefore, reliable measurements of PTS are integral to the ability to risk stratify 

patients both during preoperative counseling for ACL surgery as well as during postoperative followup. 

Presently, the gold standard measurement of PTS requires human annotation of long-leg lateral 

radiographs. However, these require dedicated views that are not routinely obtained and lack 

generalizability. While several methods exist for manual annotation on short-leg lateral radiographs of 

the knee2,3,5, we developed a fully automated deep learning artificial intelligence that can rapidly 

process and annotate PTS in an accurate and reproducible manner. 

This tool demonstrates good agreement with human annotations and will be deployed for clinical use on 

an institution-wide basis. This represents an effective clinical adjunct for the measurement of PTS as 

part of the preoperative assessment of ACL-injured patients.  

 

Key Terms: artificial intelligence, automated, ACL, posterior tibial slope, machine learning, preoperative 

assessment, radiograph 
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Figure 1: Overview of the pipeline for automatic measurement of posterior tibial slope on short leg lateral radiographs in 
patients post ACLR. (A) Original radiographic images, (B) overlay of semantic segmentation masks from the U-Net models on the 
original radiographs, (C) best fit lines through the joint surface and tibial anatomic axis through which the posterior tibial slope 
can be measured. 
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1. Research question: With the growing interest in skin diseases and skin aesthetics, the ability to 

predict facial wrinkles is becoming increasingly important. This study aims to evaluate whether a 

computational model, convolutional neural networks (CNN), can be trained for automated facial 

wrinkle segmentation. 

2. Findings: Our study presents an effective technique for integrating data from multiple 

annotators and illustrates that transfer learning can enhance performance, resulting in 

dependable segmentation of facial wrinkles. 

3. Meaning: This approach automates intricate and time-consuming tasks of wrinkle analysis with a 

deep learning framework. It could be used to facilitate skin treatments and diagnostics. 
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MANUSCRIPT  

Introduction  

With the growing interest in skin diseases and skin aesthetics, the ability to predict facial wrinkles is 

becoming increasingly important. Facial wrinkles are significant indicators of aging1 and can be useful in 

skin conditions assessment2, skin care, and early diagnosis of skin diseases3. We propose a deep 

learning-based approach to automatically segment facial wrinkles. 

Analyzing extensive collections of images can be exceedingly resource-intensive if each facial wrinkle 

must be individually assessed. Moreover, the subjectivity inherent in manual segmentation processes 

can diminish the reliability of research findings and pose a substantial issue. 

To address this issue, we effectively combine wrinkle data labeled by multiple annotators to minimize 

inter-rater variability and utilize these image-label pairs for training our model. Additionally, we 

enhanced performance using transfer learning that leverages the knowledge from a pretrained model. 

Unlike traditional methods, our approach utilizes knowledge from a pretrained model through transfer 

learning for downstream tasks, allowing it to achieve high performance even with limited labeled data. 

Furthermore, this method significantly reduces the time and cost involved in manually labeling wrinkles, 

offering substantial advantages over manual methods. 

Material and methods 

We utilized the FFHQ(Flickr-Faces-HQ)4 dataset, which consists of 70,000 high-quality face images 

captured under various conditions. The images are 1024x1024 in size, and we used them without any 

downsampling or preprocessing. For pretraining, we randomly selected 25,000 images from this dataset. 

To generate the ground truth for weakly supervised pretraining, we extracted texture maps5 from the 

face images and masked out non-facial areas to produce the final texture masks for ground truth (Figure 

1-a). For finetuning, 500 face images were randomly selected. The ground truth for supervised 

finetuning consisted of manually annotated wrinkle masks. The wrinkle annotation process involved 

three annotators, all highly experienced in image processing and analysis. Recognizing the subjective 

nature of wrinkle identification, a consistent standard was established prior to the commencement of 

labeling. During the labeling, specific emphasis was placed on annotating wrinkles in key facial areas 

including the forehead, crow’s feet, and nasolabial folds. To mitigate inter-rater variability and enhance 

the reliability of the ground truth, a majority voting mechanism was implemented, where only pixels 

labeled by at least two groups were retained (Figure 1-b). We allocated 80% of the dataset for training, 

10% for validation, and 10% for testing. 

Figure 2 shows the entire training pipeline. Initially, we trained the segmentation network in a weakly 

supervised manner using texture masks and subsequently finetuned it in a supervised manner using 

manually labeled masks. The training was performed using U-Net6 architecture. During the weakly 

supervised pretraining stage, the model learns to output texture masks from face images, receiving 

images as input and producing texture masks as output (Figure 2-a). Then, in the supervised finetuning 

stage, the model learned to classify each pixel of a face image as either a wrinkle or not, using images 

and texture maps as inputs and producing two output classes that generate logit values for background 

and wrinkles, respectively (Figure 2-b). 



In the weakly supervised pretraining stage, the model was trained for 300 epochs. Subsequently, 

supervised finetuning was performed for 150 epochs using manually annotated data. To evaluate the 

effectiveness of transfer learning in scenarios with limited label data, the supervised finetuning was 

performed using varying proportions of the whole training dataset: 100%, 50%, 25% and 5%. We used 

the Jaccard similarity index (JSI) as the evaluation metric, which is defined as follows:  

𝐽𝑆𝐼 =  
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 

where 𝐴 is the predicted segmentation, and 𝐵 is the actual label. This is a suitable metric for evaluating 

wrinkle segmentation performance as it measures the overlap between the predicted segmentation and 

the actual label. 

Results 

Table 1 displays JSI of our method compared to training exclusively with manual data (no pretraining). 

Our method demonstrates improved performance by 1.92%, 0.35%, 1.06%, and 8.53% for datasets 

comprising 100%, 50%, 25%, and 5% of the data, respectively. Additionally, our method demonstrates a 

significant performance improvement over methods pretrained with self-supervised learning techniques 

(Table 2). This highlights the efficacy of our proposed method in enhancing the accuracy of wrinkle 

segmentation, particularly in scenarios with sparse data availability. Figure 3 provides a visual 

performance of our methodology. 

Discussion and Conclusion 

We propose a reliable ground truth generation strategy and an efficient transfer learning 

approach. During the weakly supervised pretraining stage, the model learns to highlight skin 

features such as edges and textures. In the supervised finetuning stage, the model develops 

the capability to accurately discern wrinkle regions from edges and textures. Through this 

effective learning strategy, we can enhance the efficiency of wrinkle segmentation even with 

limited data, thereby achieving reliable wrinkle segmentation outcomes. However, despite 

majority voting, the subjectivity in wrinkle annotation remains a challenge. We plan to involve 

dermatologists in the wrinkle annotation process and research reliable label combination 

methods, such as label smoothing, to improve the reliability of manual wrinkle masks. 
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     APPENDIX 

 

Figure 1: Ground truth wrinkle generation pipeline. (a) denotes the generation process of ground truth 

used during the weakly supervised pretraining stage. A texture map is extracted from the face image 

using a filter based on a Gaussian kernel. Since these texture maps contain numerous false positives 

from backgrounds, non-facial areas are subsequently masked using a face-parsing deep learning model 

based on the BiSeNet7 architecture to produce the final texture mask. (b) denotes the ground truth 

generation process for the supervised finetuning stage. Three annotators each annotate the face 

images, and through majority voting, these annotations are combined to create the final manual wrinkle 

mask. 



 

Figure 2: Weakly supervised pretraining and supervised finetuning with multi-annotator labels for facial 

wrinkle segmentation. (a) denotes the weakly supervised pretraining stage, where the segmentation 

network learns to extract texture masks from RGB face images. The model receives 3-channel RGB face 

images as input and produces 1-channel texture masks as output. (b) denotes the supervised finetuning 

stage, during which the segmentation network learns to extract facial wrinkles from RGB face images 

and texture masks. The model receives 3-channel RGB face images and 1-channel texture masks as input 

and produces 2-channel output classes, each generating logit values for background and wrinkles, 

respectively. By finetuning the weights of the model, which was trained with generic face texture 

extraction capabilities, we specifically enhanced its ability to detect facial wrinkles using manual data. 



 

Figure 3: Test image samples and their predicted wrinkles compared with ground truth annotation. 



Table 1: Segmentation performance comparison between a model trained exclusively with manually 

labeled wrinkle data (No pretraining) and our proposed method, which utilizes weakly supervised 

pretraining on filtered data followed by transfer learning. In the supervised finetuning stage, each 

method was trained on 100%, 50%, 25%, and 5% of the training dataset.  

Method 100% (400) 50% (200) 25% (100) 5% (20) 𝑛𝑝𝑎𝑟𝑎𝑚𝑠  

No pretraining 0.4319 0.4120 0.3594 0.2608 17.263M 
Ours 0.4511 0.4155 0.3700 0.3461 17.264M 

(#): number of datasets 

      

Table 2: Model performance by different pretraining strategies. Jaccard similarity index illustrates the 

performance of models pre-trained using various self-supervised learning techniques compared to our 

proposed method. Our approach significantly outperforms other methods, demonstrating that our 

pretraining strategy is highly suitable for downstream tasks in wrinkle detection. 

Method Reconstruction Deblur Denoise 
Super-

Resolution 
Ours 

Jaccard similarity index  0.4334 0.4393 0.4364 0.4384 0.4511 
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1. Research question/hypothesis: Hypertensive disorders of pregnancy (HDP) is one of the largest 
causes of maternal mortality in the world accounting for 14% of pregnancy related deaths. 
However it is notoriously difficult to diagnose especially in the cases of early and late onset 
HDP. Artificial intelligence models may have the potential to predict HDP from ultrasound blind 
sweeps video acquired by minimally trained sonographers, thus democratizing access to 
effective screening of HDP in the Global South. 

2. Findings: 109 patients were recruited for this study in Ibn Rochd University Hospitals of 

Casablanca’s Maternity Department, Morocco. The results showed that using the UniFormer 

architecture, we were able to achieve a sensitivity, specificity and f1 score of 0.76, 0.71 and 

0.75, respectively. 

3. Meaning:  On a small cohort of patients using low-cost handheld devices from four 

manufacturers we were able to achieve encouraging results. To the best of our knowledge this 

is the first study to explore the use of AI to screen for preeclampsia using ultrasound imaging 

data only. It results could lead to a novel cost-efficient, accurate, and easy-to-use screening tool 

for preeclampsia in the Global South and to a better understanding of imaging biomarkers of 

preeclampsia. 
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MANUSCRIPT  

Introduction  

Hypertensive disorders of pregnancy (HDP) and their severe manifestations like preeclampsia 

and eclampsia lead to higher maternal and fetal mortality rates. HDP are responsible for 14% of 

maternal deaths worldwide1. The need for new screening tools for HDP arises from the current 

lack of reliable tests to predict term preeclampsia, which accounts for the majority of disease 

burden and severe maternal and perinatal morbidity2. Recent studies some of which have been 

led by Google have shown that untrained operators with the help of Artificial Intelligence (AI) 

can gather valuable information about the pregnancy status with expert-level sensitivity and 

specificity on gestational age, fetal malpresentation, placenta localization using an easy to learn 

“Blind Sweeps” approach3,4. If that is possible then we hypothesized that would be the same to 

detect HDP and preeclampsia using the same approach.  

Material and methods 

Study participants were recruited for this study in Ibn Rochd University Hospitals of 

Casablanca’s Maternity Department, Morocco from October the 23rd 2023 to April the 25th 

2024. The protocol consisted of seven B-mode (no Doppler) ultrasound sweeps based on 

external anatomical landmarks performed by radiology residents with less than one year of 

experience in fetal ultrasound, using five different handheld portable ultrasound devices 

(Clarius HC3, Butterfly IQ3, Butterfly IQ+, Vitalscan, Giantman). Ground truth on the HDP 

status of a patient were taken from medical records including the following criteria: Blood 

Pressure > 14/9, accompanied by proteinuria after 20 weeks of pregnancy, or evidence of other 

maternal organ dysfunction: acute kidney injury, liver involvement, neurological complications, 

hematological complications, uteroplacental dysfunction (such as fetal growth restriction, 

abnormal umbilical artery Doppler waveform analysis, or stillbirth. The data was split into 

training (80%) validation (10%), and testing (10%) at the participant level. We explored 

Recurrent Neural Network(RNN) and Convolutional Neural Network (CNN) architectures as 

well as a transformer. 

Results 

109 patients were recruited with an average age of 30 years and 40% (44) of them lived with 

HDP, note that this high proportion is due to the sampling site, and the fact that study 

participants were hospitalized. 87 videos were used for training, 11 for validation and 11 for 

testing. The transformer we used, UniFormer5 (figure 1) significantly outperformed the RNN 

and CNN approaches reaching a sensitivity, specificity and f1 score of, 0.76, 0.71 and 0.75, 

respectively versus 0.62, 0.36 and 0.61 (see table 1). 

Discussion and Conclusion 

To the best of our knowledge, this is the first study that has explored the use of a “Blind 

Sweep” approach combine to explore HDP and preeclampsia detection. Our results are 

encouraging and show that there is untapped information even in Blind Sweeps about the HDP 

status of a patient, paving the way towards new, cost-efficient and accurate screening total for 

HDP. B-mode ultrasound are not currently used to screen for preeclampsia because there is no 

recognized feature for preeclampsia6. This study shows that AI approaches can extract new 

imaging biomarkers that could also help understand the imaging manifestation of preeclampsia. 

One limitation of our study is its small sample size and monocentric nature, however this is an 

exploratory study that achieved its goal by showing that AI models are able to detect HDP even 

from relatively poor quality videos taken by minimally trained operators. 
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Figure 1 : Unified transFormer architecture [1] 

 

 
Tables 



Table 1: Performance Evaluation of Uniformer vs. CNN/RNN Models 
 

Models F1-score Specificity Sensitivity 

CNN/RNN 0.61 0.36 0.62 

Uniformer 0.75 0.71 0.76 
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Key information: 

1. Research question: how does AI assistance change the performance of the screening fetal 

anomaly ultrasound scan?  

2. Findings: AI assistance did not alter sensitivity or specificity in detecting fetal malformation, but 

resulted in significant time savings and reduced sonographer cognitive load. Automatically 

measured biometrics were highly repeatable and reproducible.  

3. Meaning: AI assistance may be of value in improving the efficiency of fetal ultrasound scans, 

without a reduction in diagnostic performance.  

  

mailto:Thomas.day@kcl.ac.uk


MANUSCRIPT  

Introduction  

Congenital malformations are the most common cause of infant mortality in high-income countries, but 

are commonly missed by current ultrasound-based screening programmes.1,2 Artificial intelligence (AI) 

has been proposed as a means of improving the performance of these scans. Most work performed to 

date has been based on retrospective analysis of ultrasound images, with no prospective randomised 

controlled trials performed, other than a small pilot study by our group that included only healthy 

fetuses.3–5 

Material and methods 

An AI tool was developed with models designed to automatically save 13 standard image planes, and 

perform fetal biometry. The models were trained and tested using a prospectively acquired dataset of 

7309 full videos of routine fetal ultrasound scans. The models were packaged into a clinically usable tool 

that operated in real time during the scan, with feedback to the sonographer via a tablet. 

The tool was assessed using a randomized, single center, open label trial in a large teaching hospital, 

comparing AI-assisted vs standard manual scans. Pregnant participants with fetal congenital heart 

disease (CHD, selected as an example lesion as it the most common and most commonly missed group 

of malformations) and with healthy fetuses were recruited and scanned with both methods. Screening 

sonographers were recruited from regional hospitals and were randomized to scan with the AI tool or in 

the standard fashion, blinded to fetal CHD status.  

The main outcome measures were the diagnostic performance in detecting fetal malformation, scan 

duration, repeatability and reproducibility of biometrics, and sonographer cognitive load. 

Results 

78 pregnant participants (26 with fetal CHD, 1 with an incidental finding of an extracardiac 

malformation) and 58 sonographers were recruited. The sensitivity and specificity of the AI-assisted scan 

in detecting fetal malformation was 88.9% and 98.0% respectively, with the standard scan achieving 

81.5% and 92.2% (not significant, table 1). AI-assisted scans were significantly shorter than standard 

scans (median 11.4 min vs 19.7 min, p <0.001, figure 1), with no change in reporting time. Sonographer 

cognitive load was significantly lower in the AI-assisted group (median NASA TLX score 35.2 vs 46.5, p 

<0.001, Paas scale 5 vs 6, p = 0.004, figure 2). For all biometrics, the AI repeatability and reproducibility 

was superior to manual. 

Discussion and Conclusion 

This is the first randomised controlled trial of AI in obstetric ultrasound that incudes fetuses with known 

disease. The AI tool did not include any disease detection models, but rather altered sonographer 

workflow by automating mundane and repetitive tasks such as image saving and fetal biometry. By 

changing the workflow in this way, a significant time saving was generated (as well as a reduction in 

sonographer cognitive load). We did not see any change in diagnostic performance, which is reassuring 

as automation bias leading to a drop in performance has been a concern. Automatic biometry appears 

to be highly repeatable and reproducible.  



The main limitation of this trial was that it was not performed on unselected participants. The cohort 

was enriched with abnormal fetuses, and the sonographers were self-selected so may not be 

representative of the screening workforce. Further trials are planned to address both points, but as fetal 

malformation is relatively rare, very large sample sizes of several thousand participants will be required 

in order to be adequately powered.  

Another limitation is that we did not incorporate any disease detection models in the clinical tool. This is 

an active area of research, and further iterations of the tool are planned to include this. Nevertheless, 

this is one of the relatively few randomized prospective controlled trials of AI in medicine and raises the 

exciting prospect of future human-AI collaboration in this field. 
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APPENDIX 

 

Figure 1: duration of scanning and reporting by both methods. 

 

 

Figure 2: cognitive load of the sonographers compared between the two scanning methods. 

 

 



Table 1: diagnostic performance of the two methods in detecting all fetal structural malformations 

(affected group n=27, unaffected group n=51).   

 AI-assisted scan Manual scan P value* 

True positive (n) 24 22 - 
False positive (n) 1 4 - 
True negative (n) 50 47 - 
False negative (n) 3 5 - 
Sensitivity (95% CI) 88.9% (70.8-97.6%) 81.5% (61.9-93.7%) 0.480 
Specificity (95% CI) 98.0% (89.6-100%) 92.2% (81.1-97.8%) 0.180 

 

*McNemar’s test for paired proportions 
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Key information: 

1. Research question: Can artificial intelligence be used to align fundus imaging acquired at 
different timepoints from the same patient? 

2. Findings: We evaluated an open-source pipeline “EyeLiner”, for registering, or aligning, 
longitudinal fundus imaging on our internal dataset. EyeLiner shows improvements in 
performance over the current state-of-the-art techniques for fundus image registration. 

3. Meaning: Our pipeline effectively compensates for image variation induced during image 
capture, while preserving the biological variations associated with the target disease. This allows 
clinicians to better visualize pathological changes across different timepoints. 

MANUSCRIPT  

Introduction 

Detecting changes in longitudinal fundus imaging is key to monitoring disease progression in chronic 
ophthalmic diseases, such as geographic atrophy (GA) due to age-related macular degeneration (AMD)1-
5. With the recent FDA approval of therapies to slow GA progression, detecting lesion growth becomes of 
even higher importance. Yet, clinicians still typically assess changes in disease status by either 
independently reviewing or manually juxtaposing longitudinally acquired fundus imaging. This makes 
manual image evaluation variable and subjective, potentially impacting clinical decision-making. Our 
pipeline, EyeLiner, obtained state-of-the-art results on the Fundus Image REgistration (FIRE) dataset6. In 
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this study, we evaluate our deep learning (DL) pipeline, “EyeLiner,” for registering, or aligning, two-
dimensional fundus imaging in the context of GA. 

Material and methods 

EyeLiner registers a “moving” image to a “fixed” image using an anatomically guided keypoint matching 
pipeline (Figure 1). Our pipeline uses out-of-the-box DL algorithms to segment the blood vessels from the 
fixed and moving images. Subsequently, the vessel segmentations are provided as input to the SuperPoint 
and LightGlue algorithms to output corresponding keypoint sets for the fixed and moving images7,8. 
Finally, the spatial transformation between keypoint sets is computed using a thin-plate spline algorithm, 
which is used to resample the final aligned image. We evaluate EyeLiner on 50 color fundus photo (CFP) 
pairs and 176 fundus autofluorescence (FAF) pairs from an internal dataset of age-related macular 
degeneration patients from the Colorado Ophthalmology Research Information System (CORIS)9. We 
qualitatively evaluated EyeLiner using flicker animations, checkerboards and subtraction maps where the 
fixed and registered images were alternated to determine continuity in the blood vessels. Quantitatively, 
we compute the mean distance (MD) between clinician-annotated keypoints on the fixed and the 
registered moving images for CFPs. Furthermore, defining a successful registration that is below a distance 
threshold, we plot the success rate over varying thresholds. This gives a monotonic curve from which we 
compute the area under curve (AUC) statistic to summarize model performance. 

Results 

We found EyeLiner effectively aligns longitudinal image pairs from FIRE and our CORIS dataset, as 
qualitatively evaluated through registration checkerboards (Figures 2 and 3). We observe that the 
continuity in static blood vessels was preserved, indicating a good-quality registration. Furthermore, 
subtraction maps were generated for FAFs, with hypointense regions indicating areas of change between 
fixed and moving images. Quantitatively, we found that the MD decreased for this model after alignment 
from 33.77 to 1.34 pixels for the CFPs from the CORIS dataset. Finally, we obtained an AUC of 0.97, which 
beat the existing state-of-the-art model SuperRetina (AUC=0.82). 

Discussion and Conclusion 

Our pipeline demonstrates excellent alignment of CFPs in comparison to the previous state-of-the-art 
method in patients with AMD. EyeLiner finds better correspondences due to the deep learning based 
keypoint matching pipeline, achieving superior MD and AUC values compared to the SuperRetina pipeline, 
which relies on a brute-force matching strategy. Furthermore, we qualitatively show clinical applicability 
to GA progression tracking by using subtraction maps on fundus autofluorescence (FAF) imaging (Figure 
3).  This information will better assist clinicians in determining whether GA is stable or might benefit from 
treatment for slowing GA progression. However, our study is not without limitations. While retinal blood 
vessels are considered anatomically stable, further research is required on the impact of disease-specific 
lesions, and their progression, on altering vessel morphology and appearance in imaging over time. 
Additionally, our pipeline uses vessel segmentation to obtain clinically relevant keypoints. We hope to 
further develop end-to-end vessel keypoint detectors to bypass the need for vessel segmentation. 
Nevertheless, we envision that EyeLiner will facilitate better visualization of disease change over time, 
enabling clinicians to make more informed decisions. 
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APPENDIX 

 

Figure 1: EyeLiner pipeline for registration of color fundus images 

 

 



Figure 2: Qualitative evaluation of EyeLiner pipeline for three cases from our internal CORIS dataset. 
Checkerboards present continuities in the blood vessels after image alignment (right-most column). 

 

Figure 3: Utility of EyeLiner for change detection. Subtraction map between fixed and registered images 
shows region of hypointensity around GA lesion, demonstrating GA growth. 
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Key information: 

1. Research question: Can deep learning-based automated analysis of color fundus images 
accurately predict of conversion to late AMD?  

2. Findings: Deep learning-based automated analysis of color fundus images is a rapid and 
accurate method for prediction conversion to late AMD.  

3. Meaning: Automated analysis of color fundus images for predicting late-stage age-related 
macular degeneration can be used in screening, epidemiological studies, clinical management 
and patient selection for clinical trials.  
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MANUSCRIPT (included in the word count) 

Introduction  

Late-stage age-related macular degeneration (AMD) is the most common cause of blindness in high 
income countries, caused by either geographic atrophy or neovascularization. The prevalence of late 
AMD is expected to increase from 400,000 to 700,000 in Europe by the year 2050[1]. Intermediate AMD 
is a precursor stage with drusen and pigmentary changes visible on color fundus images (CFIs) that can 
be used for prognostic modelling. Deep learning (DL)-based quantification of these biomarkers to enable 
stratification patients into high-risk groups who are likely to convert to the blinding late-stage 
disease[2]. We developed a fully automated DL-based pipeline to rapidly and objectively stratify high-
risk individuals.  

Material and methods 

A total of 37,420 CFIs of 17,605 eyes from 8890 participants partaking in the population-based 
Rotterdam Study were available. We developed a fully automated retinal image analysis pipeline that 
encompasses essential steps such as image selection, quality assessment, image preprocessing, 
automated segmentation of anatomic structures and lesions and the synthesis of quantified biomarkers.  

Our DL segmentation algorithm was trained to automatically segment drusen, reticular pseudodrusen, 
hypo- and hyperpigmentation on CFIs and quantify the total affected macular retinal area in mm^2. The 
CFIs originate from a multitude of different imaging devices used over the last 35 years of the Rotterdam 
Study. Conversion to geographic atrophy and/or neovascular AMD within 7 years was predicted using 
random forest classifier based on the automatically extracted features as well as age and sex using 10-
fold cross-validation. A separate model was fitted to human-graded labels of the same eyes for 
comparisons. Area under the receiver operating curves (AUCs) were constructed for geographic atrophy 
and neovascular AMD.  

Results 

173 eyes converted to GA and 172 to neovascular AMD within a time period of 7 years. The random 
forest classifier based on automated intermediate AMD area quantifications reached a similar to higher 
AUC for conversion to GA (0.95 (95%CI 0.93-0.97) versus 0.95 [95%CI 0.93-0.97]) and for conversion to 
neovascular AMD 0.93 (95%CI 0.91-0.94) versus 0.92 [95%CI 0.90-0.94]) when compared to human 
graded labels. 

Discussion and Conclusion 

Our automated retinal image analysis pipeline for prediction of conversion to late AMD can be used as a 
rapid and objective method for clinical prediction modelling in AMD patients at risk of GA or 
neovascularization. Potential use includes population screening, epidemiological studies, clinical 
management and patient selection for clinical trials. Implementation in the clinical setting in particular 
would alleviate the burden on clinical ophthalmologists.  



A limitation of our tool is that, while being highly accurate, it is nevertheless based on biomarkers on 
CFIs only. In the future, we envisage incorporating multi-modal data such as from OCT and genetic 
information to more accurate predictions.  
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APPENDIX 

 

Figure 1. An infographic demonstrating (above) the human-grader process of image analysis with 
manual searching for images, interpretation of multimodal imaging and clinical data and then coarse 
quantification of lesion size in categorical estimates and (below) our fully automated pipeline 
encompassing image selection, quality assessment, image preprocessing, automated segmentation of 
anatomic structures and lesions and the synthesis of quantified biomarkers for use in a random forest 
classifier 

 



 

Figure 2a and b: (above) segmentation model output demonstrating automated segmentations of 
drusen and (below) demonstrating automated segmentations of drusen, reticular pseudodrusen, 
hyperpigmentation and RPE degeneration  
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