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Key information: 

1. Research question: Can automatic recognition models be used real-time in a laparoscopic
colorectal surgical setting and how do they compare to surgeons?

2. Findings: Real-time automatic recognition models for the ureters and autonomic nerves in
laparoscopic colorectal surgery were successfully developed using retrospective surgical videos. A
prospective observational study determined that the models could operate in a real surgical
environment and recognized key anatomical structures faster than surgeons during surgery; this
result was significantly more profound in the group of inexperienced than experienced surgeons.

3. Meaning: The models may be able to improve surgical safety by compensating for the experience
of surgeons.
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Introduction 

In order to prevent intraoperative injuries, surgeons should always recognize key anatomical structures 
quickly and accurately during surgery. Since medical adverse events are largely surgical, there is a need 
for developing technological innovations to improve surgical safety and efficiency. 

The ureter and autonomic nerves are key anatomical structures in laparoscopic colorectal surgery, and 
their inadvertent injury can lead to severe complications and urogenital dysfunction. To avoid such 
injuries, surgeons aim to recognize these anatomical structures as early and accurately as possible 
during surgery. 

The aims of this study are to develop a real-time automatic recognition model for the ureter and 
autonomic nerves in laparoscopic colorectal surgery and to prospectively compare the recognition 
performance in a real surgical environment with surgeons. 

Material and methods 

This is a single-center prospective observational study. 

Surgical videos recorded between January 2015 and December 2021 were used retrospectively as 
training and test data to develop the model. A prospective observational study conducted between 
September 2021 and February 2022 evaluated the model in the surgical setting.  

Surgical videos of 299 and 249 cases to develop the models recognizing ureters and autonomic nerves, 
respectively, and 20 patients who underwent laparoscopic sigmoid colon or rectal resection during the 
study period to prospectively evaluate the model.  

Recognition performance of the deep learning-based semantic segmentation model was compared with 
that of board-certified and uncertified surgeons.  

We evaluated whether the developed model could automatically and accurately recognize the ureter 
and autonomic nerves in real-time in the operation room and compared time to recognition between 
surgeons and the model. 

Results 

In the ureter semantic segmentation task, for training, 10,711 annotated images from 252 surgical 
videos and 9,795 unannotated images from 36 surgical videos were used as training data and negative 
training data, respectively. The negative training data were used to reduce false positives. For testing, 
2,266 annotated images from 47 videos and 2,350 unannotated images from nine videos were used. 

In the semantic segmentation task for autonomic nerves, for training and testing, 14,577 annotated 
images from 194 surgical videos and 3,599 annotated images from 55 videos were used, respectively. 

The Dice similarity coefficient (DSC), recall, and precision in the ureter semantic segmentation task were 
0.722, 0.739, and 0.707, respectively. In addition, in the semantic segmentation task for autonomic 
nerves, the DSC, recall, and precision for hypogastric nerves were 0.579, 0.566, and 0.592, respectively, 
and those for the aortic plexuses were 0.628, 0.603, and 0.656, respectively. 



In a total of 89 comparisons between all surgeons versus the model, the model could recognize targets 
faster than surgeons 67 out of 89 times (75%). In a comparison separately for board certification status, 
the model could recognize faster than board-certified and uncertified surgeons 29 out of 44 times (66%) 
and 38 out of 45 times (84%), respectively. A significant difference was observed between them (p = 
0.043). 

Discussion and Conclusion 

We successfully developed a real-time automatic recognition model for the ureter and autonomic 
nerves in laparoscopic colorectal surgery. The developed model operated normally in a real surgical 
environment and could recognize target structures faster than surgeons during surgery. Notably, this 
result was enhanced for inexperienced surgeons, suggesting the proposed approach may be able to 
compensate for the skill and experience of surgeons. This study offers novel insights and may help 
promote research in the field of computer vision in surgery. Nevertheless, many challenges remain in 
terms of clinical applicability and generalizability of such systems, which should be addressed through 
multicenter randomized controlled trials.   

Disclosures 

All authors declare no financial or non-financial competing interests related to this study. 



APPENDIX 

Figure 1: Reference original (left) and corresponding annotated images (right). (A) Image with ureter 
annotation in a medial-to-lateral mobilization approach. (B) Image with ureter annotation in a lateral-to-
medial mobilization approach. (C) Image with right hypogastric nerve annotation. (D) Image with left 
hypogastric nerve annotation. € Image with aortic plexus annotation. 



Table 1: Results of the quantitative evaluation with metrics 

DSC Recall Precision 
Ureter 0.722 0.739 0.707 
Autonomic nerves 

Hypogastric nerves 0.579 0.566 0.592 
Aortic plexus 0.628 0.603 0.656 

DSC: Dice similarity coefficient 

Table 2: Results of the qualitative evaluation using the rubric 

Questions Ureter Autonomic nerves 
1. Would you like to use this system intraoperatively? 3.67 (± 0.985) 3.73 (± 0.594) 
2. Do you think this system will help you avoid ureteral or

autonomic nerve injury? 3.67 (± 0.888) 4.07 (± 0.704) 

3. Do you think this system will help you select an appropriate
dissection plane? 3.08 (± 0.900) 3.47 (± 0.743) 

4. Do you think this system will facilitate intraoperative
guidance or make it easier for the trainee to understand it? 3.75 (± 0.622) 4.20 (± 0.775) 

5. Do you think this system is useful for postoperative self-
review? 3.50 (± 0.905) 4.33 (± 0.816) 

6. Do you think this system could improve surgical safety? 3.75 (± 0.754) 4.00 (± 0.756) 
*Mean (± standard deviation)

Table 3: Results of the prospective evaluation of recognition performance 

Success Failure NA Recognition rate (%) 
Ureter 

Medial to lateral view 19 1 0 95.0 
Lateral to medial view 17 2 1 89.5 

Autonomic nerves 
Right hypogastric nerve 17 2 1 89.5 
Left hypogastric nerve 15 1 4 93.8 
Aortic plexus 18 1 1 94.7 

NA: no appearance on the monitor 



Table 4: Results of the comparison of the intraoperative recognition performance of surgeons and the 
developed model 

Surgeon vs AI 
(N = 89 comparisons) 

Qualified surgeon vs AI 
(N = 44 comparisons) 

Nonqualified surgeon vs AI 
(N = 45 comparisons) 

Surgeon AI Draw Surgeon AI Draw Surgeon AI Draw 
Ureter 

Medial to lateral view 5 12 2 4 4 1 1 8 1 

Lateral to medial view 1 15 1 1 7 1 0 8 0 

Autonomic nerves 

Right hypogastric nerve 3 14 2 1 7 1 2 7 1 
Left hypogastric nerve 2 11 2 1 6 1 1 5 1 
Aortic plexus 4 15 0 4 5 0 0 10 0 

Surgeon win 15 (17%) 11 (25%) 4 (9%) 
AI win 67 (75%) 29 (66%) 38 (84%) 
Draw 7 (8%) 4 (9%) 3 (7%) 

AI: the developed semantic segmentation model 
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1. Research question: Augmented Reality (AR) in robotic surgery is amongst others hampered by 3D
models occluding instruments. Can deep learning instrument segmentation resolve this issue?

2. Findings: We present an instrument segmentation pipeline which segments all surgical
instruments. A dedicated GPU infrastructure merges the segmentation video stream with the AR
stream and feeds it back to the surgical console in real-time during 3 different robotic procedures.



3. Meaning: Instrument occlusion no longer poses a significant bottleneck for safe clinical
implementation of AR in renal surgery. We obtain a 13 milliseconds latency which enables real-
time instrument de-occlusion during AR surgery.

MANUSCRIPT 

Introduction  

The integration of Augmented Reality (AR) into surgical practice faces several challenges, such as accurate 
registration of pre-operative data and context-awareness to display relevant information1. Accurate 
registration requires, amongst other, handling with real and virtual occlusions caused by the AR model2. 
Figure 1 depicts the use of AR for renal surgery and shows how instrument occlusion inhibits a safe AR 
experience.  

In this work, we present the software development and hardware implementation of a robust real-time 
binary segmentation pipeline to de-occlude surgical instruments. We show the pipeline works efficiently 
during 3 robot-assisted surgeries. 

Material and methods 

A binary segmentation algorithm was trained, tested and validated on a dataset of 31812 images in which 
all non-organic items were manually delineated3. The dataset was sampled uniformly across 100 full 
length robot-assisted partial nephrectomies. After splitting on a procedural basis, 24087, 4545 and 3180 
images were used for training, validation and testing respectively. A Feature Pyramid Network (FPN) 
architecture4 with EfficientNetV2 encoder backbone5 was selected as the most resource efficient 
combination in a separate optimization study. 

The hardware solution consists of a NVIDIA Clara AGX developer kit1 as embedded computing architecture 
for demanding video processing applications, with live video capture through an integrated DELTA-12G-
elp-key capture card2. The software framework was developed in the NVIDIA Holoscan SDK. 
Preoperative 3D models are manually fabricated pre-operatively using Mimics (Materialise, Leuven, 
Belgium), based on CT or MRI imaging. 

Figure 2 displays the operating room setup. The capture card takes in the video stream through SDI, and 
directly offloads it to the GPU of the Clara AGX, which also has the 3D model preloaded. The user can 
interact with the 3D model through a keyboard and mouse for correct intra-operative alignment. The 
output stream is sent to an external monitor as well as to the surgical console where it is viewed in the 
Intuitive TilePro™ window. 

We apply the setup in 3 different hospitals during a vascular stent removal, liver metastasectomy and a 
partial nephrectomy.  

1 NVIDIA CLARA AGX DEVELOPER KIT FOR AI-ENABLED MEDICAL DEVICES. Details: https://resources.nvidia.com/en-
us-enabling-smart-hospitals-ai-ep/nvidia-clara-agx-dev?lx=KWlJE5&xs=301547 

2 DELTA-12G-ELP-KEY 11. Details: https://www.deltacast.tv/products/developerproducts/ 
sdi-capture-cards/delta-12g-elp-key-11 



Results 

The trained segmentation algorithm achieves a 98,37% test set accuracy. Inference time was reduced 
from 40,5 to 5,1 seconds through conversion from PyTorch to TensorRT, without impacting accuracy. 

The pipeline effectively addresses instrument occlusion with a latency of 13ms per frame. Qualitative 
surgical feedback indicated that the perceived end-to-end latency is acceptable for real-time surgical 
application. In case of liver surgery, 3D model alignment was more difficult due to floppiness of the liver 
and the extent of the liver when compared to the renal tumour or vascular stent. Surgeons found the AR 
overlay to be particularly useful during moments where echography was used as AR can provide an extra 
sense of depth. Surgical instrument segmentation now allows them to efficiently manipulate and localize 
with echography, aided by AR. All patients had a normal postoperative course with no adverse events. 

Discussion and Conclusion 

In this work, we show that AR induced instrument occlusion is a resolvable issue when combining 
dedicated hardware and software solutions. The segmentation algorithm is shown to transfer smoothly 
across 3 different domains of robot-assisted surgery in 3 hospitals. Despite being trained only on robot-
assisted partial nephrectomy instrument segmentation, the algorithm seems to generalize well across 
robotic surgery, also on unseen instruments. Correct overlay and registration remain bothersome issues 
and are found to be domain specific, e.g. it is more bothersome in liver than in vascular or renal AR, due 
to larger liver deformations. Future work should continue in focussing on improving registration and 
model deformation. 
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APPENDIX 

Figure 1: The problem of instrument occlusion by 3D models during AR. Figure C highlights in green the 
problem of instrument occlusion which inhibits fluent AR interaction. Figure D shows how it can be tackled 
through instrument segmentation. 

Figure 2: Hardware setup enabling real-time AR instrument de-occlusion. In the right bottom corner, we 
see a second surgeon performing manual 3D model registration on the endoscopic view. The endoscopic 
view is pulled into the Clara AGX’s GPU directly from the endoscopic tower. The operating surgeon sees 
this identical screen in the left lower corner of robotic console. 

Figure 3: Toggling on/off instrument occlusion for all 3 cases during echography. 
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1. Research question: Can deep-learning based multimodal fusion approach automatically classify

surgical feedback components? Does a combination of video, audio, and text improve

classification AUC?

2. Findings: We achieve high AUCs for classification of feedback categories ranging from 77 to 96

and that fusion improves performance by 6.8%. We learn that Staged training, that is first

pretraining each modality separately and then training them jointly, is more effective than

training modalities together from the start.

3. Meaning: This work offers an important first look at the feasibility of automated classification of

real-word live surgical feedback based on video, audio, and text modalities. This can lead to

improvements in surgical training and outcomes.
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Introduction 

Real-time informal verbal feedback delivered by experienced surgeon to trainees during live surgery is a 

key component of surgeons’ training process [1]. Prior work has shown that the quality of such feedback 

can affect intraoperative performance [3], as well as impact surgical skill acquisition [4] and trainee’s 

autonomy [7]. Quantification and systematic analysis of properties of real-world feedback is challenging 

and time consuming. We aim to leverage deep multi-modal fusion model to classify surgical feedback 

components automatically. 

Material and methods 

We use a dataset of real-life feedback delivered by trainers to trainees during live robot-assisted surgery 

that has been introduced and rigorously annotated in [6].  Feedback is categorized into 1) Anatomic 

“Familiarity with anatomic structures and landmarks”, 2) Procedural - “Pertains to timing and sequence 

of surgical steps”, and 3) Technical - “Performance of discreet task with appropriate knowledge of 

exposure, instruments, traction, etc.”, as well as into delivery categories: 4) Positive Reinforcement - “A 

complementary remark” and 5) Visual Aid - “Addition of visual element to direct trainee’s attention or 

focus”. The categories are non-exclusive. 

We leverage multi-modal inputs composed of video, audio, and text (Fig. 1-A) in order to perform binary 

multi-label classification of surgical feedback into 5 components (Fig. 1-B). In our experiments we 

systematically vary 2 dimensions: 1) complexity of the fusion model architecture (1-C) and 2) training 

strategy (1-D). 

We obtain individual baselines for each modality by fine-tuning models for the same number of epochs 

and reporting AUC on the test set. We use label-balancing for each feedback dimension obtained via 

random downsampling of majority class. For each experiment we perform an 80%/20% random 

train/test split. We perform each experiment 3 and report mean AUC as well as standard deviation. 

Dimension specific label balancing leads to variable dataset sizes, specifically: Anatomic (N =2208), 

Procedural (N =1634), Technical (N =1378), Positive Reinforcement (N =524), Visual Aid (N =606). 

We extract 10 second video and audio around a human annotated feedback timestamp. This includes 5 

seconds before (to capture context) and 5 seconds after (to capture delivery) the feedback onset. We 

downsample the video resolution to 320x250 and extract 16 randomly uniformly sampled frames. 

Results 

We achieve high AUCs varying from 76.5 to 96.2 which make it feasible to apply our model to replace 

manual annotation (Table 1). Through ablation studies we find that the model training process is more 

important for fusion effectiveness (gain of 6.8%) than model architecture (gain of 2.0%). We arrive at an 

optimal Staged Fusion approach which starts with independent training of each modality and continues 

with training modalities jointly. This approach helps mitigate the dominance of one modality that can 

suppress extracting information from other modalities. We confirm our intuition that video modality is 

most important for classification of “Visual Aid” dimension and emotion extracted from audio is very 

important for “Positive Reinforcement” classification. 

Discussion and Conclusion 



This work is the first to explore automated classification of components of real-world informal live 

surgical feedback. We show that it is feasible to classify components of such feedback with high AUCs 

varying from 76.5 up to 96.2. Secondly, we show that this feedback is indeed inherently multi-modal, 

and fusion can meaningfully improve AUC by as much as 10%. Third, we show that the multi-modal 

fusion through staged training is more effective than the fusion model architecture itself. 

The quantification of surgical feedback as an important first step towards generating or selecting the 

optimal feedback automatically [5]. We open opportunities for quantification of surgical feedback at 

scale from video and audio recordings, which can lead to improvements in surgical training and 

outcomes. 
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APPENDIX 

Figure 1: Overview of our multimodal inputs consisting of video, audio, and text (A) and 5 binary multi-

label feedback classification outputs (B). We explore model architectures (C) as well as training 

strategies (D) for increasing the gain from multimodal fusion. 

Table 1: Mean AUC scores for binary classification of feedback components from 3 runs with different 

data splits. In the subscript we report the standard deviations. The highest AUC for each component is 

underscored. ↓ represents loss, ↑ represents small gain withing 1.0% and ↑ represents larger gain. 

The models are trained on the dataset using human-transcribed text. In the top 3 rows we report 

performance of individual models on each modality. The Voting represents the simple baseline majority 

vote fusion. The subsequent Ensemble Fusion (Ens) and Feature Fusion (Feat) models represent 



progressively more complex fusion architectures. Each architecture variant is trained either Jointly (J) or 

in a Staged fashion (S) for 20 epochs. We can see that Staging always improves AUC, while model 

complexity has practically no impact. 
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Key information: 

1. Research question:
Can an AI system be used to support surgeons’ recognition of anatomical structures in total
laparoscopic/robot-assisted hysterectomy?

2. Findings:
The ability to recognize the ureter/bladder with and without the use of AI was assessed. As a
result, a significant improvement in sensitivity was observed with the use of AI, regardless of
whether the physician was a specialist or non-specialist in gynecology.

3. Meaning:
These results suggest the system can be used to improve surgeons’ recognition of anatomical
structures during total laparoscopic/robot-assisted hysterectomy and it might lead to
prevention of intraoperative organ injuries.
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Introduction 

In laparoscopic or robot-assisted total hysterectomy for conditions such as uterine fibroids or uterine 
cancer, intraoperative injuries of the ureter and bladder are considered the most notable incidental 
complication (frequency: 0.5-2.2%)1-3). Injuries of the ureter or bladder can occur due to 
misidentification or inadequate confirmation during the dissection and suturing around the uterus. 
There have also been reports that the risk of ureteral injury increases 4.4 times when the operation is 
performed by surgeons with experience of less than 30 cases3). We have developed an artificial 
intelligence (AI) model to recognize the ureter and bladder intraoperatively. We conducted the 
standalone performance testing and the support performance testing of the AI model to see if it could 
support surgeons in recognizing the ureter and bladder. 

Material and methods 

For the construction of the AI model, intraoperative endoscopic images from laparoscopic or robot-
assisted total hysterectomy were used. For the AI model of ureter recognition support, annotated 
training data from 41 institutions, 409 cases, and 13,934 images were used. For the AI model of bladder 
recognition support, annotated training data from 38 institutions, 220 cases, and 4,940 images were 
used. 

For the standalone performance testing, 300 short videos with and without the ureter and 240 short 
videos with and without the bladder are prepared and evaluated the accuracy of the AI model in 
detecting them. 

For the support performance testing, 150 short videos with and without the ureter and 120 short videos 
with and without the bladder are prepared. Factors that could affect the recognition ability of the AI 
model, such as severe adhesion of Douglas, large myomas, and a history of cesarean section, were 
included in the short videos as difficult cases. We conducted a recognition test for eight gynecological 
specialists and eight non-specialists, where they had to determine the presence and position of the 
ureter and bladder in videos without AI model support, and then conducted same recognition tests 
using videos overlaid with AI model inference results. We verified whether the accuracy of anatomical 
recognition by physicians changed with or without the support of the AI model. 

Results 

In the standalone performance testing, the sensitivity was 51.3% for the ureter and 80.0% for the 
bladder, with specificity of 92.7% and 94.2% respectively. In the support performance testing, there 
were significant increases in sensitivity under AI assistance, with the ureter increasing from 43.5% to 
58.1%, and the bladder from 54.2% to 70.0%. Especially among non-specialists, significant increases 
were observed, with the ureter's sensitivity improving from 35.3% to 54.9% and the bladder's sensitivity 
from 46.6% to 68.4%. 

Discussion and Conclusion 

From the results of the two performance testing, it appears that our AI model can support physicians in 
recognizing the ureter and bladder. These results suggest the system can be used to improve surgeons’ 



recognition of anatomical structures during total laparoscopic/robot-assisted hysterectomy and it might 
lead to prevention of intraoperative organ injuries. 
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APPENDIX 

Figures and pictures should be added in this section. 

Figure 1: AI system identifies and highlights ureter to alert and assist surgeon’s recognition. 

Tables should be added here. 
Table title: Positive effects for the recognition of anatomical structures by AI support 
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Key information: 

1. Research question: to develop, test and benchmark a computer aided detection (CADe) system
for Barrett’s neoplasia

2. Findings: we developed a CADe system on the largest data set to date; performance is superior
to general endoscopists and on par with experts; detection rate of general endoscopists
significantly increases when they receive CADe assistance.

3. Meaning: using CADe as an assistive tool has the potential to increase the detection rate of
endoscopists towards the level of experts

MANUSCRIPT (included in the word count) 

Introduction 

Esophageal cancer is the 6th largest contributor to cancer-related deaths globally. Adenocarcinoma, a 
main subtype, has a fast rising incidence in Western cultures [1]. Barrett’s esophagus (BE) is a well-
known precursor for esophageal adenocarcinoma [2]. BE patients are therefore subject to regular 
endoscopic surveillance to detect neoplasia at an early stage. Detecting early BE neoplasia may be 
challenging for endoscopists as neoplastic lesions often have a subtle endoscopic appearance. Studies 
suggest that early lesions are missed on a regular basis [3]. Computer aided detection (CADe) systems 
may help to overcome this challenge. 

The goal of this study was to develop, validate and benchmark a CADe system for early BE neoplasia. 

Material and methods 

First, the CADe system was pretrained with ImageNet followed by domain-specific pretraining with 
GastroNet, an in-house data set comprising over 5 million unlabeled endoscopic images from the 
gastrointestinal tract. The system was then trained with a large, heterogeneous data set of 14,146 white 
light images of 2,506 BE patients originating from 14 hospitals. All imagery had pathology confirmation 
by means of biopsy or resection specimen. Neoplasia segmentation was performed by 14 BE expert 
endoscopists. Total model size was 5.2 MB with an expected inference speed on an embedded FPGA of 
20 frames per second and was developed to enable direct implementation onto current endoscopy 
platforms.  

For external validation, the system was evaluated on two independent test sets. The “all-comers test 
set” comprised 119 consecutive cases (409 images, 251 videos) collected during a two-month interval, 
thereby representing daily clinical practice. The “benchmarking test set” comprised 175 cases (400 
images, 188 videos) and was artificially enriched with challenging cases of subtle neoplasia (Figure 1). 
This test set was evaluated by 112 endoscopists from six countries. First without CADe assistance, and 
after a six-week wash-out period, with CADe assistance. Additionally, 28 external and internationally 
renowned BE expert endoscopists reviewed this test set.  



Results 

The CADe system detected virtually all neoplasia in the all-comers test set with an acceptable amount of 
false positives. In the benchmarking test set, CADe system was superior to endoscopists in detecting 
neoplasia and non-inferior to BE experts. With CADe assistance, neoplasia detection of endoscopists 
significantly increased without compromising specificity. Numerical data is described in Table 1. 

Discussion and Conclusion 

This study describes the rigorous development and evaluation of a CADe system for BE neoplasia using 
white light endoscopy on both still images and video. CADe outperformed endoscopists and, when used 
as an assistive tool, CADe significantly improves the detection rate of general endoscopists towards the 
level of experts. CADe detected nearly all neoplasia in a test set representing daily clinical practice.   

The study comprises two limitations. First, the system is developed and evaluated on high-quality data 
from expert centers. To improve robustness and generalizability to community-based hospitals, more 
data should be collected within this domain. Second, this study was performed in an in-silico setting 
with no live AI-endoscopist interaction. We aim to perform a clinical pilot study soon to further 
investigate live performance.  
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APPENDIX 

Figure 1. Example cases of Barrett’s neoplasia in the benchmarking test set with corresponding CADe 
detections.   

Table 1. Results of the CADe system and endoscopists on all test sets. 

Test set Scored by Classification Localization 

Sensitivity Specificity Score Method 

All-comers 
image test set CADe 95% 70% 100% Bounding box 

All-comers 
video test set CADe 97% 85% NA NA 

Benchmarking 
image test set 

CADe 90% 80% 100% Bounding box 

General endoscopists 74% 89% 92% Biopsy mark 

General endoscopists 
with CADe 

88% 90% 92% Biopsy mark 

Expert endoscopists 87% 86% 94% Biopsy mark 

Benchmarking 
Video test set 

CADe 91% 82% NA NA 

General endoscopists 67% 96% 100% Biopsy mark 

General endoscopists 
with CADe 

79% 94% 96% Biopsy mark 

Expert endoscopists 86% 90% 96% Biopsy mark 

Note. NA = Not applicable 
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Key information: 

1. Research questions: Can we effectively measure the level of shared cognitions among members
of a surgical team? Is there a correlation between increased shared cognition and improved
team performance?

2. Findings: We found that a correlation between shared cognition towards surgical team tasks,
measured by the similarity of answers to a list of surgical-related questions, and improved team
performance are existed. Furthermore, leading surgical teams exhibited greater synchronization
in eye movements (measured by the dual eye-tracking) and brain activities.

3. Meaning: Team cognition serves as the foundation for team performance. With the introduction
of new tracking technologies, we expect to have more behavioural evidence available to assess
team cognition and its impact on performance.
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Introduction 

The capacity of an individual human operator to process information in complex surgical tasks is limited 
[1]. Therefore, collaboration among healthcare providers, including surgeons, nurses, and 
anesthesiologists from different specialties, is crucial in the operating room. Their collective expertise 
and teamwork are essential for achieving successful surgical outcomes. To optimize results, surgical 
team members must assess the situation and patient condition, effectively communicate important 
information, manage available resources, and synchronize their actions toward a common goal [1, 2]. 
This mutual understanding is often referred to as shared cognition. 

However, it remains uncertain whether we can accurately measure the level of shared cognition among 
members of a surgical team and whether increasing shared cognition is correlated with improved team 
performance. In this study, we designed a surgical team task within a simulated environment for surgical 
residents, OR nurses, and anesthetists. We assessed shared knowledge regarding the surgical goal, 
patient condition, operating approach, and strategies for managing surgical crises using a set of 
multiple-choice questions (MCQs). 

We hypothesized that an increase in shared cognition would correlate with improved team performance 
on the task, as measured by task completion time, objective assessment scores, and visual scanning 
patterns observed among team members. 

Material and methods 

This series of research was conducted at the Surgical Simulation Research Lab at the University of 
Alberta. A team consisting of six surgical residents, four OR nurses, and four anesthesia residents was 
assembled to perform a laparoscopic gastrectomy case within a simulated environment. During the 
operation, two unexpected events—a small artery bleeding and bowel perforation—were introduced to 
assess the response of the surgical team members to these situations. 

Prior to the simulation training, each participant completed a questionnaire comprising 12 multiple-
choice questions (MCQs) that covered various aspects such as patient condition, pre-surgical 
preparation, surgical goals, operating approach and steps, strategies for managing potential surgical 
crises, and post-operative management. The total score was adjusted to 100 points. Additionally, video 
footage was used to count the number of anticipatory movements performed by the nurse during the 
surgical procedure. The ability to perform anticipatory movements is influenced by a nurse's experience 
in participating in surgical cases [3-5]. 

The surgical performances of each three-member team were recorded through video and audio for the 
purpose of measuring operation time and evaluating their performance using the Observational 
Teamwork Assessment for Surgery (OTAS)[6]. The total score was reported in 100 points. 

Two team members, specifically the surgeon and nurse, were required to wear head-mounted eye-
trackers to record their eye scanning movements during the operation. The trajectories of their eye 
movements were analyzed using gaze overlap[7] and cross-recurrence analysis (CRA) [8]. By 
incorporating both spatial and temporal features of the eye scanpath into its calculations, CRA provides 



a more accurate mathematical outcome for assessing the similarity among different scanpaths, thereby 
enhancing our ability to describe shared cognition among team members. 

Results 

A total of 15 surgical teams were formed to complete 15 laparoscopic partial gastrectomy cases.  On 
average, their MCQs scores were 86 ± 21 (maximum 100 points). The average procedure time was 37 ± 
16 minutes, and average OTAS was 92 ± 33.  

Correlation between MCQs scores and procedure time was weak but significant (r =-0.11; P < 0.05); 
MCQs scores and OTAS score was not significant correlated (r =0.06; P = 0.183).  

On average, OR nurse performed 9 ± 6 anticipatory movements, including delivering grasper, scissors, 
and sutures to surgeons without needs for a verbal command from surgeons.   Correlation between 
number of anticipatory movement and MSQs scores (r =0.24; P < 0.01) was moderate, and procedure 
time was weak but significant (r =-0.10; P < 0.05). 

On average, surgeons and nurses achieved 34 % time during the procedure gazing on the same surgical 
areas.  The gaze overlap correlated weakly with MSQs scores (r =0.12; P < 0.05). Cross Recurrence 
analysis yielded an improved outcome, the good performance teams (n=4) achieved 51 % gaze overlap, 
their gaze trajectories were more synchronized with a small phase delay (0.41 s). In contrast, the poor 
performance teams (n=3) only achieved 31% gaze overlap; their gaze trajectories were less synchronized 
with a larger phase delay (1.74 s). 

Discussion and Conclusion 

Team cognition forms the essential foundation for team performance. When team members possess a 
clear understanding of the team's goals, each other's roles within the team, and effective strategies for 
collaboration, they can develop a higher level of collective knowledge. This shared understanding allows 
team members to anticipate each other's actions and work together efficiently. In addition to traditional 
observational methods, advancements in tracking technologies, such as eye-tracking, provide a valuable 
way to measure team cognition, generating more substantial behavioral evidences to assess team 
performance.  
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Key information: 

1. Research question: Does sarcopenia as measured by fully automated AI-based software
examination of preoperative CT scans predict overall survival following radical nephrectomy and
IVC thrombectomy.

2. Findings: Sarcopenia as measured by a fully automated segmentation system, in combination
with other measures of nutrition and cytoreductive intent, is an independent predictor of
overall survival following IVC thrombectomy.

3. Meaning: Sarcopenia, hypoalbuminia, and cytoreductive intent are associated with inferior OS
after Nephrectomy and IVC thrombectomy. These variables should be utilized in preoperative
risk stratification.
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Introduction 

Sarcopenia has recently been shown to be an important predictor of outcomes in cancer 
patients. However, despite the significant morbidity associated with the procedure, there exists 
no study examining the impact of body composition and sarcopenia on survival following 
nephrectomy and inferior vena cava (IVC) thrombectomy. We aimed to assess associations of 
sarcopenia, muscle density, and albumin levels with overall survival (OS) after nephrectomy 
and IVC thrombectomy for renal cell carcinoma. 

Material and methods 

A total of 179 patients undergoing nephrectomy with IVC thrombectomy from 2006 to 2022 had 
sufficient clinical data and available digitized preoperative CT scan of the abdomen. Fully automated 
multi-slice measurements of skeletal muscle volume and density were made using the Data Analysis 
Facilitation Suite (Voronoi Health Analytics, Vancouver, Canada) at the mid L3 level. Skeletal muscle 
index (SMI) was calculated with the skeletal muscle area (cm2) normalized for height (m2), and skeletal 
muscle density (SMD) was calculated from average Hounsfield units. OS was estimated with the Kaplan-
Meier method. Associations between body composition, preoperative albumin, preoperative measures of 
inflammation, and relevant clinical variables and OS were assessed with univariable and multivariate Cox 
analyses. 

Results 

103 of the 179 patients (56.4%) were sarcopenic. 56 of 179 surgeries (31.3%) were 
cytoreductive in nature, and 82 (45.8%) involved level 3 or 4 IVC thrombus. Sarcopenia was 
associated with increased age (p<0.001), lower preop albumin (p=0.012), and lower SMD 
(p=0.006). The median OS was 22.7 and 62.0 months for sarcopenic and nonsarcopenic 
patients, respectively (P = .027). On univariate analysis, cytoreductive intent (p<0.001), 
elevated neutrophil lymphocyte ratio (p=0.047), and hypoalbuminemia (p=0.015) were all also 
associated with OS. On multivariate cox analysis, sarcopenia, hypoalbuminemia, and 
cytoreductive intent were all independently associated with OS. The worst OS was observed in 
sarcopenic patients with hypoalbuminemia undergoing cytoreductive surgery (median OS 7.9 
months) vs the best in non-sarcopenic patients with normal albumin and no metastatic disease 
(median OS 67.4 months).  

Discussion and Conclusion 

Sarcopenia, hypoalbuminia, and cytoreductive intent are associated with inferior OS after 
Nephrectomy and IVC thrombectomy. These variables should be utilized in preoperative risk 
stratification, and additional consideration for preoperative systemic therapy should be given 
to those at highest risk of poor survival. Limitations of this study include the retrospective 
nature which introduces the possibility of selection bias, and the single center experience which 
may limit external validity.  



Time (months) 

APPENDIX 

Figure 1: Kaplan Meier Curves for Overall Survival in IVC Thrombectomy Patients: Stratified by 
Sarcopenia and Hypoalbuminemia 
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Key information: 

1. Research question: What are critical insights from organizing a biomedical data challenge from
the perspective of a surgical society?

2. Findings: We present the preliminary insights gained from the SAGES CVS Challenge. We elaborate
on consensus-based findings of three advisory committees consisting of experts in the field of
surgical data science on the individual stages of the challenge.

3. Meaning: The SAGES CVS Challenge provides a standardized infrastructure for future surgical data
challenges by fostering the collection of a global surgical dataset reflective of the real-world
diversity and leveraging interdisciplinary collaboration to achieve robust, scalable, and reliable AI
for risk mitigation in surgery.
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Introduction 

Data challenges have led to considerable breakthroughs in Artificial Intelligence (AI). They are, therefore, 
a common methodology among computer scientists in acquiring large-scale datasets to explore various 
computational solutions for distinct real-world issues. Among the most famous examples is the ImageNet 
Challenge1, which spurred the development of deep learning algorithms, particularly convolutional neural 
networks. In surgery, significant examples include the MICCAI Endoscopic Vision Challenge (EndoVis)2, 
focused on instrument segmentation, and video understanding in endoscopy, and the Robotic Vision 
Challenge (ROBVIS)3, which addresses the classification of tissue and anatomic structures and surgical 
scene understanding. These challenges target important spatiotemporal features and interdependencies 
related to surgical success. However, they are predominantly organized and therefore influenced by 
computer scientists. 

In contrast, the Critical View of Safety (CVS) Challenge, administrated by the Society of American 
Gastrointestinal and Endoscopic Surgeons (SAGES), incorporates the perspectives of computer scientists, 
surgeons, and industry representatives and presents a diverse, globally acquired surgical video dataset. 
The challenge targets a universally recognized surgical safety measure in laparoscopic cholecystectomy 
(minimally invasive Gallbladder removal) – the Critical View of Safety (CVS)4–6. The procedure is widely 
recognized as the benchmark for surgical AI, and the CVS presents an ideal use case for computer vision 
analysis and exploration by the global data science community.  

Material and methods 

From its inception in 2021, the CVS Challenge Organizers assembled three advisory committees (AC), 
consisting of clinical and technical experts in surgical data science and industry representatives, for 
consensus-based decision-making. The AC’s expertise was deployed in three focus areas of the challenge: 
(A) Data Structure and Acquisition, (B) Data Use and Annotation, and (C) Governance and Execution of
Surgical Data Challenges. A partnership with Surgical Safe Technologies (SST) was established to develop
a video acquisition portal for safe and reliable deidentification and uploading of surgical video data. Two
summits were conducted in 2022 and 2023 to compose detailed pipelines for each focus area. A three-
round Delphi Consensus led to the composition of an annotation guideline and curriculum, and an
additional Delphi is currently being conducted to compose challenge metrics and competition rules.

Results 

We present the preliminary results of this global initiative and elaborate on key findings from conducting 
a biomedical data challenge from the perspective of a surgical society. To date, we acquired 413 videos 
from 44 countries through the SAGES Video Acquisition Portal with an additional data donation of 150 
videos from other countries through Dropbox Business. We report on the composition of an ‘Annotation 
Guideline’ and the successful implementation of an ‘Annotation Curriculum’ for standardized training of 
annotators based on proficiency-based progression. Moreover we present the AC’s perspective on 
evaluation approaches of challenge results and thoughts on trade-offs between compute and evaluation 
rigorousness.   



Discussion and Conclusion 

The SAGES CVS Challenge provides a comprehensive guideline for conducting a surgical data challenge. By 
addressing the stages from video recording in the operating room, HIPAA/GDPR compliant data storage 
and distribution, surgical video annotation to dataset release, and challenge organization, we aim to 
establish a standardized infrastructure, and evaluation criteria for future surgical challenges. The Video 
Data Acquisition Portal ensures compliance with worldwide varying legal and ethical regulations to 
facilitate global contributions to increase data diversity. The Annotation pipeline promises robust, 
reproducible, and clinically relevant annotations, scalable to other use cases. And finally, leveraging 
interdisciplinary collaboration and the expertise of clinicians, computer scientists, and industry alike will 
allow us to conduct a competition resulting in generalizable and universally applicable AI. Ultimately this 
interdisciplinary initiative aims to foster the development of AI for real-time deployment in the operating 
room to enhance surgical safety. 
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Key information: 

1. Research question: This study aimed to assess the feasibility of a deep learning (DL) approach to 
objectively evaluate critical non-technical skills – namely, teamwork performance – during real-
life cardiac surgery. 

2. Findings: The results demonstrated that teams with higher teamwork ratings presented lower 
median team displacement extracted from video analysis and lower PSD across most frequency 
bands compared to low performance teams, indicating less irregularity of body motion patterns 
at the team level during the separation from the bypass phase of cardiac surgery. 

3. Meaning: This study shows the feasibility of using deep learning to analyze teamwork 
performance based on OR video recordings. These findings along with future studies may help to 
establish more standardized and objective methods for evaluating teamwork and 
other non-technical skills in the OR. 



MANUSCRIPT (included in the word count) 

Introduction 

The successful delivery of surgical care in high-risk and complex environments, such as cardiac surgery, 
depends on effective teamwork among clinicians. The significance of these skills as part of non-technical 
skills (NTS) has been widely recognized in surgical settings [1-2]. The evaluation of teamwork in the OR 
has traditionally relied on post-hoc subjective and qualitative methods, such as observational rating 
scales and self-assessment tools. Real-life skill assessment usually involves the direct observation of 
surgical trainees or retrospective analysis of operation videos, with skills rated by experts based on 
predefined criteria. Although these methods provide a realistic assessment and can be blinded, they are 
constrained by limited reproducibility and rater availability [3]. Furthermore, subjective methods suffer 
from significant limitations, such as observer recall bias, subjective perception of performance, and lack 
of specificity. The unstructured and descriptive approaches to teamwork assessment may also fail to 
capture the complexities of team dynamics in the OR. These limitations emphasize the importance of 
developing more objective and quantitative methods for evaluating teamwork in the OR [4-6]. Recent 
studies have explored various quantitative methods for evaluating surgical team performance, such as 
motion-capturing suits and gloves, gesture detection using specialized RGBD cameras like Microsoft 
Kinect, body optical markers, wearable device sensors, and instrument tracking. Despite the potential 
benefits of these technologies, their implementation in OR environments remain challenging due to 
concerns surrounding privacy and patient safety [1]. Moreover, several hurdles must be overcome to 
integrate these technologies into clinical practice, including the need for specialized hardware and 
software, the cost and complexity of data collection and analysis, and potential disruptions to the 
clinical workflow [7]. Recent advancements in machine learning have enabled the application of DL 
methods in computer vision (CV) for the assessment of surgical skills[4,8]. Specifically, automated 
surgical skill assessment in robotic interventions has been a subject of interest due to the accessibility of 
kinematic data and video recordings from the console[9]. However, there is a significant gap in the 
current research, which mainly focuses on evaluating technical surgical skills, leaving the potential of DL 
methods in assessing non-technical surgical skills, such as teamwork, largely unexplored. This study 
aimed to assess the feasibility of a DL approach to objectively evaluate two critical non-technical skills – 
namely, teamwork performance – during real-life cardiac surgery. 

Material and methods 

Participants: A cardiovascular OR team comprises 4 subteams: (1) a cardiac surgical team 
consisting of an attending surgeon, one or more residents and fellows, and a surgical physician 
assistant; (2) anesthesiology team consisting of an attending anesthesiologist, one or more 
residents/fellows, and a nurse anesthetist; (3) a perfusion team consisting of a lead and an 
assistant perfusionist; and (4) a nursing team consisting of scrubbed nurses and circulators. We 
recorded audio and video data from the entire team using three lapel microphones (surgeon, 
anesthesiologist, and perfusionist) and two cameras (narrow and wide field of view). This 
research was approved by the Institutional Review office. Informed consent was obtained 
from all participants, which included patients and all OR staff involved with the procedures. 
Data were collected during 30 cardiac surgery procedures. 



NOTSS: Three trained raters used the NOTSS tool [10] to evaluate teamwork from 30 cardiac surgery 
video recordings. The NOTSS tool has four categories (situation awareness, decision-making, teamwork 
& communication, and leadership). Surgical teams were rated during separation from cardiopulmonary 
bypass, a critical phase of cardiac surgery using a 1-4 Likert scale. The rating for teamwork category was 
used to categorize teams into two groups: teams with ratings within the first tertile were classified as 
"Low Performance," while teams within the third tertile were classified as "High Performance". Table 1 
presents an overview of the four categories of NOTTS and the corresponding behavioral elements within 
each category. The current study focused on the teamwork category, which encompasses exchange of 
information, establishment of shared understanding, and coordination of activities among team 
members. 

DL Method: A previous study proposed a methodology based on the OpenPose library for analyzing 
dynamic changes in OR teams using RGB camera-recorded video data of OR staff positions during 
procedures [4,8] (Fig.1). In this study, we used this methodology to extract body pose estimations from 
each video at 30 frames per second, identifying the position of keypoints (17 keypoints, Figure 2) in the 
OR staff’s body. OpenPose is an open-source software library released under the Apache 2.0 license and 
provides real-time multi-person keypoint detection and tracking for body, hands, and facial pose 
estimation from video streams or images. This library is based on DL and specifically uses a 
convolutional neural network (CNN) architecture, with the capability of running on both CPU and GPU 
platforms. Although OpenPose is not specifically designed for the OR, this approach was deemed 
appropriate for analysis in the OR due to its ability to accurately estimate body pose in complex and 
dynamic environments. However, it is important to note that some features important to the OR 
context may be missing from the approach, such as the identification of individuals by name or role. 
Despite these limitations, our focus was on team dynamics and collective motions of individuals, rather 
than individual motion. Therefore, the use of this approach allowed us to analyze and extract the team's 
movements and dynamics from the video data, which was essential to achieving our research objectives. 

Team Motion Metrics: Average team displacement: The x and y coordinates of the neck keypoint (Figure 
2) were used to calculate the Euclidean distance between the neck and a reference point (x = 0, y = 0).
The average displacement per frame in pixels was then calculated across all team members to capture
the entire team motion and was subsequently averaged over 1-second epochs.

Entropy: For each second, the team displacement was classified into one of 3 states (S1, S2, S3) based 
on which tertile that value was in the entire motion data distribution. The distribution of these states 
over time was quantified by calculating Shannon’s entropy (H) in bits, using a 30-second sliding window 
updated each second. Restricted symbol expression represents low entropy, which means there is a 
higher level of organization in the team motion. Power Spectral Density (PSD): We also calculated the 
PSD of team displacement using Welch's method to analyze the frequency of team motion data. This 
method provides information about the frequency content of the signal and can be used to identify 
patterns or characteristics in the data that may not be detectable in the time domain. We chose a 
sampling frequency of 1 Hz, a segment length of 1000 samples, and a frequency range of 0-1 Hz to 
capture the various frequencies of team displacement. Previous studies reported that compared to 
novice, expert clinicians show smoother and less variable motion patterns and have a lower PSD and 
more concentrated frequency distribution [10]. 



 Statistical Analysis: The rating data for teamwork from NOTSS was tested for normality using the 
Kolmogorov-Smirnov test and found to be non-normal. Therefore, the data was summarized as median 
(1st-3rd interquartile). For the comparison of average team displacement, entropy, and PSD, t-tests 
were used as these data were found to be normally distributed. 

Results 

NOTSS: A total of 22 cardiac surgery teams (first and third terciles) were analyzed. The median 
teamwork score was 3.5 (3.3-3.7) in the teams with the “High Performance” group (N=11) and 3.0 (2.8-
3.1) in the teams with the “Low Performance” group (N = 11). Team displacement: The median 
displacement of the “High Performance” group had a median displacement of 98.61 pixels (30.25-
183.32) and the “Low Performance” group was 100.82 pixels (19.06-190.16) (Figure 3). The statistical 
analysis showed a significant difference between the two groups (p=0.012, t= 2.44). Entropy: The 
median of entropy for the "High Performance" group was 0.89 bits (0.63 - 1.03), while the median of 
entropy for the "Low Performance" group was also 0.9 bits (0.68 - 1.04). No statistically significant 
difference was found in entropy between the two groups (p = 0.305). PSD: Based on the Welch's t-test 
on the PSD values of team motion data grouped by "High Performance" and "Low Performance", we 
found that there was a statistically significant difference in the mean PSD values between the two 
groups (p = 0.03, t = - 2.22. The mean PSD for the "Low Performance" group (39.217 dB/Hz) was higher 
than that of the "High Performance" group (38.577 dB/Hz) in the frequency range of 0.1-1 Hz, indicating 
higher energy in almost all frequency ranges for the "Low Performance" group (Figure 4).  

Discussion and Conclusion 

The objective of this study was to investigate the feasibility of a DL method based on the OpenPose 
library for the objective assessment of teamwork, which is critical non-technical skills in cardiac surgery. 
Our results demonstrate the feasibility of using motion metrics of surgical teams as a proxy for assessing 
their teamwork. Specifically, we found that the median team displacement, which reflects the overall 
motion of the surgical team, was significantly different between the "High Performance" and "Low 
Performance" groups. The "High Performance" group had a slightly smaller median displacement, 
indicating that they were more efficient and coordinated in their movements compared to the "Low 
Performance" group. In addition, we investigated the use of entropy and PSD as metrics for assessing 
the complexity and stochasticity of team motion. Our findings did not reveal a significant difference in 
entropy between the "High Performance" and "Low Performance" groups. This is in contrast to previous 
studies that have used metrics such as team motion to measure situational awareness at the team level 
during cardiac surgery [4]. The entropy of physiological metrics was also found sensitive enough to 
detect variations in team cognitive load and uncertainty. It is possible that our sample size was not large 
enough to detect a significant difference in entropy. Future studies with larger sample sizes and in 
different contexts could further explore the utility of entropy as a metric for assessing surgical 
teamwork. We observed a significant difference in PSD between the two groups. The "Low 
Performance" group had a higher mean PSD in the frequency range of 0.1-1 Hz, indicating higher energy 
in almost all frequency ranges compared to the "High Performance" group. This finding suggests that the 
"Low Performance" group exhibited more irregular and unpredictable team motion, which is indicative 
of low performance teamwork. Similarly, [10] reported that PSD can be used to differentiate between 
skilled and unskilled surgeons in laparoscopic tasks based on the frequency components of their motion 



data. This study found that skilled surgeons had lower energy (PSD) in the highfrequency components of 
their motion data, compared to unskilled surgeons, indicating more controlled movements. 

Limitations and Future Directions: While our study provides promising results regarding the feasibility of 
using motion metrics and DL methods for objective assessment of surgical teamwork, there are several 
limitations to be considered. One limitation is the small sample size, which may have affected the ability 
to detect significant differences in motion metrics. Another limitation is the use of only one type of 
surgical procedure, which limits the generalizability of the findings to other types of surgeries. 
Additionally, our study only considered team motion metrics and did not take into account other 
potential factors that may impact teamwork, such as task complexity, team composition, and team 
familiarity. Future studies with larger sample sizes and diverse surgical procedures, along with the 
integration of additional factors, are necessary to further explore the utility of DL methods for objective 
assessment of surgical teamwork. While the NOTSS framework includes both teamwork and 
communication skills, our approach focuses primarily on analyzing teamwork through computer vision-
based motion analysis. However, a limitation of our approach is that it may not capture all aspects of 
non-technical skills, including communication skills that rely on verbal cues. To address this limitation, 
future studies could explore the integration of additional data sources, such as physiological or speech 
data, to supplement the analysis of communication skills. Future studies need to explore the integration 
of team motion metrics data with physiological data, such as heart rate variability, to create more 
advanced computer-based cognitive systems that aim to augment the cognitive capabilities of surgical 
teams. Furthermore, by integrating various sources of data including individual and team motion 
metrics, psychophysiological parameters, instrument tracking metrics, and action recognition variables, 
it is conceivable to develop automated and intelligent systems that can continuously monitor the 
surgical workflow and evaluate technical and nontechnical surgical skills. This multi-modal approach 
could enable real-time analysis of the surgical team's performance and facilitate the provision of 
corrective feedback, ultimately leading to improved surgical outcomes and enhanced patient safety. 
Moreover, future studies also need to consider integrating patient outcomes data and preoperative 
patient data into automated assessment of teamwork, as this can provide a more holistic understanding 
of the factors that impact surgical outcomes and patient safety. Such integration can also help identify 
areas for improvement in team performance and communication, leading to enhanced patient care and 
better surgical outcomes. 

Conclusion: The present pilot study demonstrates the potential of using DL algorithms to analyze 
teamwork performance based on standard surgical video recordings. The results provide preliminary 
evidence for the feasibility of using motion metrics to evaluate nontechnical skills, with implications for 
the development of standardized and objective evaluation methods for assessing these skills in the 
surgical environment. Furthermore, future research may build upon our findings to further refine these 
methods and establish their efficacy for improving performance assessment and quality improvement 
initiatives in the field of cardiac surgery. 
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APPENDIX 

Figures. 

Figure 1: A DL-based methodology for surgical team performance analysis [4,8] 

Figure 2. (a) Keypoints that can be detected by the OpenPose algorithm, (b) example of how Euclidean 
distance is used to measure the displacement of each individual of OR staff. 



Figure 3. Team displacement between “High Performance” and “Low Performance” groups (* denotes 
for p <0.05) 

Figure 4. PSD of the 'High Performance' and 'Low Performance' groups during cardiac surgery 



Tables. 
Categories and Behavioral Elements of Non-Technical Surgical Skills (NOTTS) 



Subspecialty Medicine and Pathology 
Moderators:  Philip Edgcumbe, MD PhD and (pending) 

Time Presenting Author Title 
14:00-
14:10 

Christina Luong (Vancouver 
General Hospital)* 

Validation of machine learning 
models for estimation of left 
ventricular ejection fraction on 
point-of-care ultrasound: Insights 
on features that impact 
performance 

14:10-
14:20 

Mitchel Molenaar (Amsterdam 
UMC)*  

Deep learning-based segmentation 
of coronary arteries in x-ray 
coronary angiography 

14:20-
14:30 

Sandrine de Ribaupierre (Western 
University, Canada)* 

Robot-Assisted SEEG Electrode 
Placement for Epilepsy in Pediatric 
Patients: Workflow Comparison 
between Frame-Based and 
Frameless approaches 

14:30-
14:40 

Jacob Jaremko (University of 
Alberta)* 

Feasibility of Ultrasound Screening 
for Hip Dysplasia in Primary Care 
Clinics Using AI 

14:40-
14:50 

Willa Yim (IMCB, A*STAR)* H&E 2.0: deep learning-enabled 
identification of tumor-specific 
CD39+CD8+ T cells in marker-free 
images for predicting 
immunotherapy response 

14:50-
15:00 

Mai Chan Lau (BII A*STAR)* HE2.0 web server: an image 
database supports interactive 
visualization towards AI-
empowered pathology training 

15:00-
15:10 

Discussion/Slush time 



Validation of machine learning models for estimation of left ventricular 
ejection fraction on point-of-care ultrasound: Insights on features that 

impact performance 

Authors: 
Christina L Luong MD, MHSc a*, Mohammad H. Jafari MSc, Phdb*, Delaram Behnami MASc, PhDb*, 
Yaksh R Shah BScc*, Lynn Straatman MDa, Nathan Van Woudenberg MAScb, Leah Christoff NPa, 
Nancy Gwadry NPa, Nathaniel Hawkins MBChB, MD, MPHa, Eric C. Sayre PhDd, Darwin Yeung MDa, 
Michael Tsang MDa, Ken Gin MDa, John Jue MDa, Parvathy Nair MD, MHPEa, Purang Abolmaesumi 
MSc, PhD b†, and Teresa Tsang MD a†  

* Joint first authors,
† Joint senior authors

Affiliations: 
a University of British Columbia, Division of Cardiology, Vancouver, BC, Canada  
b University of British Columbia, Department of Electrical and Computer Engineering, Vancouver, BC, Canada 
c University of British Columbia, Faculty of Pharmaceutical Sciences, Vancouver, BC, Canada  
d Arthritis Research Canada, Vancouver, BC, Canada 

Presenting author: 
Dr. Christina L. Luong 
University of British Columbia; Diamond Health Care Centre 9th Floor Cardiology 
2775 Laurel Street, Vancouver, British Columbia; V5Z 1M9 
email: christina.luong@ubc.ca 

Keywords: 
Point-of-care ultrasound, Echocardiography, Heart failure 

Key information:

1. Research question:
a. What is the performance of a machine learning (ML) model developed using

comprehensive echocardiogram when applied to point-of-care ultrasound (POCUS)
compared with expert interpretation and echo reported left ventricular ejection fraction
(LVEF)?

2. Findings:
a. Of 1257 videos, from 138 subjects, the ML model generated LVEF predictions on 341

videos. We observed a good intraclass correlation (ICC) between the ML model
prediction and the reference standards (ICC = 0.77-0.84). Despite good overall
correlation, lower ICC was found during atrial fibrillation (ICC 0.60) versus sinus rhythm
(ICC 0.83).

3. Meaning:
a. ML models trained and tested on echocardiogram data for LVEF can be successfully

applied to POCUS.



INTRODUCTION: 
Machine learning (ML) models can accurately estimate LVEF from echocardiography1-7, 

but few studies have validated performance on clinician-driven cardiac point-of-care ultrasound 
(POCUS)8. Cardiac POCUS is a powerful tool that can aid in diagnosing heart disease and guide 
treatments at the bedside. However, point-of-care ultrasound can be a difficult modality to 
master, resulting in suboptimal image quality that hampers ML model performance. This study 
aims to show the feasibility and reliability of ML LVEF estimation on clinician-driven POCUS. 

MATERIAL AND METHODS: 
We recruited participants from a Heart Failure clinic at an academic referral hospital 

between February 2021 and June 2022. The study included clinician scanners with variable 
scanning experience (7 physicians and 2 nurse practitioners). Eligible participants were 18 years 
or older with an echocardiogram within 3 months. Scanners obtained target views independently. 
The acquired clips were analyzed offline by the ML model for LVEF estimation and compared 
with reference standards. The videos were processed for ML model analysis by cropping with an 
in-house algorithm, downsizing to 128x128 pixels with 30 sampled frames, and rescaling pixel 
intensities. Successful LV segmentation by the ML model for 30 consecutive frames was 
required for LVEF estimation; videos of insufficient quality were excluded. 

The reference standards for this study were level III echocardiographer interpretation of 
images and derived LVEF (calculated linear interpolation of LVEF from the subject’s formal 
echo reports). The level III echocardiographer gold standard was established in two ways: (1) 
LVEF per randomized video file and (2) overall participant LVEF after viewing all videos. ML 
model performance was evaluated with the intraclass correlation coefficient (ICC) between the 
ML model LVEF and reference standards. Subgroup analysis was performed for BMI, rhythm, 
and scanner type.  

The ML model in this study was previously developed and validated using 2,920 apical 
echo cines from 2,127 patients. It is based on U-Net architecture, predicting LV segmentation 
mask and two landmarks heatmaps (LV apex and mitral valve) to estimate LVEF by Simpson's 
method of disc. The model analyzes echo cine frame by frame for the entire cardiac cycle, and its 
architecture and performance on echo data were previously described by Jafari et al9. 

RESULTS: 
There were 138 participants scanned, yielding 1257 videos. Participant characteristics are 

summarized in Table 1 and POCUS data by rater is shown in Tables 2 and 3. Of 1257 POCUS 
videos, 341 were sufficient for ML model estimation of LVEF. The ICC for ML model and level 
III echocardiographer LVEF was 0.772 [0.501,1.000] for visual estimates and 0.778 
[0.578,1.000] when segmentation was feasible on randomized single videos. There was an 
increase in ICC when the echocardiographer was able to view all videos for a participant: visual 
LVEF ICC 0.794 [0.173, 1.000] and 0.843 [0.310, 1.000] with segmentation (Table 4). There 
was good agreement between the ML model and the derived reported LVEF, ICC 0.798 [0.143, 
1.000]. These ICC values indicate a good level of inter-rater agreement between the ML model 
and several reference standards Figure 1. 

The correlations between the ML model and the BMI groups ≥ 30 and < 30 were similar 
with good inter-rater reliability. Gender impacted ML model LVEF estimation, with higher ICC 
values for females compared to males. Analysis of AF/AFL and non-AF/AFL rhythms showed 
variability in ICC values, with better performance for non-AF/AFL rhythms (Table 5).  



DISCUSSION AND CONCLUSIONS: 
We demonstrate that our ML model exhibits a strong correlation with expert-estimated and 
echocardiogram-reported LVEF on cardiac POCUS (ICC = 0.77 to 0.84), although performance 
varied by comorbid conditions. Our findings highlight the potential of ML-augmented cardiac 
ultrasound while also shedding light on situations where performance may be compromised.  
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APPENDIX: 

Figure 1: Linear regression plots 
comparing the ML model to the 
reference standards. The 
intraclass correlation coefficient 
(ICC) for ML model LVEF and 
level III echocardiographer LVEF 
was 0.772 [0.501,1.000] and 0.778 
[0.578,1.000] for randomized 
single videos by visual estimate 
and segmentation, respectively. 
The ICC for single video ML 
model LVEF and level III 
echocardiographer LVEF was 
0.794 [0.173, 1.000] for visual 
assessment and 0.843 [0.310, 
1.000] by segmentation when the 
expert was able to review all clips 
for a participant. The ICC for ML 
model LVEF and derived reported 
LVEF was 0.798 [0.143, 1.000]. 
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Outpatient
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Clinician cardiac 
POCUS

Offline ML model 
estimation of LVEF

Inter-rater agreement with 
reference standards

ICC 0.772-0.843

Settings when ML model 
more likely to fail:

Males
ICC 0.693-0.796
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image quality for ML model 

analysis
NPs and MDsN = 138

LVEF 67%

Central Illustration: Performance of Machine Learning Model for Left Ventricular Ejection 
Fraction on Clinician Scanned Point of Care Ultrasound in Heart Failure Clinic.

AF/AFL = atrial fibrillation/flutter; HF = heart failure; ICC = intraclass correlation; LVEF = left ventricular ejection 
fraction; ML = machine learning; POCUS = point of care ultrasound; 



Table 1: Participant demographic data 

Characteristics Proportion 

Male 119*/138 (86.2%) 

Scanned by nurse 91/138 (65.9%) 

Scanned by physician 47/138 (34.1%) 

Rhythm atrial fibrillation or 
atrial flutter at the time of 
scan 

54/138 (39.1%) 

LVEF > 50% 27/138 (19.6%) 

Type of cardiomyopathy 
• NICMO
• ICMO
• Unknown!

Type of cardiomyopathy 
• 73/138 (52.9%)
• 53/138 (38.4%)
• 12/138 (8.7%)!

Variable Mean ± SD

Age (y) 66.2 ± 14.3 

Weight (kg) 81.4 ± 18.6 

BMI (kg/m2) 27.0 ± 5.5 

Heart rate at time of scan 
(BPM) 

73.9 ± 16.6 

Systolic BP (mmHg) 121.7 ± 19.8 

Diastolic BP (mmHg) 68.7 ± 10.1 

*1 individual identified as a transgender man



Table 2: Single video imaging data split by type of rater 

Single video imaging data split by type of rater 

Rater Number of videos 
assigned an LVEF 

Number of videos 
of insufficient 
quality for LVEF 
estimation 

Mean estimation 
of LVEF ± SD 

ML model 341 916 0.39 ± 0.13 

Level III expert 
visual LVEF on 
randomized single 
videos 

851 406 0.41 ± 0.13 

Level III expert 
segmentation LVEF 
on randomized 
single videos 

245 1012 0.40 ± 0.14 

Level III expert 
visual LVEF, 
accounting for all 
videos for a 
participant 

1175* 82 0.40 ± 0.13 

Level III expert 
segmentation 
LVEF, accounting 
for all videos for a 
participant 

754# 503 0.41 ± 0.13 

Derived LVEF from 
echo reports 

N/A N/A 0.39 ± 0.12 

* All videos for a participant were included in this category if at least one video in the study was assigned
an LVEF by visual assessment
# All videos for a participant were included in this category if at least one video in the study was assigned
an LVEF by segmentation



Table 3: Participant imaging data split by type of rater 

Rater Number of studies 
assigned an LVEF 

Number of studies 
of insufficient 
quality for LVEF 
estimation 

Mean estimation 
of LVEF ± SD 

ML model 91 47 0.39 ± 0.11 

Level III expert 
visual LVEF on 
randomized single 
videos, averaged 
per patient 

120 18 0.40 ± 0.13 

Level III expert 
segmentation LVEF 
on randomized 
single videos, 
averaged per 
patient 

67 71 0.40 ± 0.14 

Level III expert 
visual LVEF, 
accounting for all 
videos for a 
participant 

124 14 0.40 ± 0.13 

Level III expert 
segmentation 
LVEF, accounting 
for all videos for a 
participant 

72 66 0.40 ± 0.12 

Derived LVEF from 
echo reports 

138 0 0.39 ± 0.12 



Table 4: Inter-rater agreement for single video data 

Observation Rater 1 of LVEF Rater 2 of LVEF ICC (95% CI) 

1 ML Model Level III expert 
visual LVEF on 
randomized single 
videos 

0.772 (0.501, 
1.000) 

2 ML Model Level III expert 
segmentation LVEF 
on randomized 
single videos 

0.778 (0.578, 
1.000) 

3 ML Model Level III expert 
visual LVEF, 
accounting for all 
videos for a 
participant  

0.794 (0.173, 
1.000) 

4 ML model Level III expert 
segmentation 
LVEF, accounting 
for all videos for a 
participant 

0.843 (0.310, 
1.000) 

5 ML Model Derived LVEF from 
echo reports 

0.798 (0.143, 
1.000) 



Table 5: Inter-rater agreement for single video data, subgroup analyses 

Impact of BMI on LVEF estimation: BMI ≥ 30 or BMI <30: 

Observation Rater 1 of 
LVEF 

Rater 2 of 
LVEF 

ICC (95% CI) 
BMI ≥ 30 
(n=80) 

ICC (95% CI) 
BMI < 30 
(n=260) 

1 ML Model Level III expert 
visual LVEF on 
randomized 
single videos 

0.813 (0.247, 
1.000) 

0.749 (0.740, 
1.000) 

2 ML Model Level III expert 
segmentation 
LVEF on 
randomized 
single videos 

0.829 (0.165, 
1.000) 

0.709 (0.098, 
1.000) 

3 ML Model Level III expert 
visual LVEF, 
accounting for 
all videos for a 
participant  

0.822 (0.129, 
0.999) 

0.771 (0.551, 
1.000) 

4 ML model Level III expert 
segmentation 
LVEF, 
accounting for 
all videos for a 
participant 

0.909 (0.481, 
1.000) 

0.802 (0.243, 
1.000) 

5 ML Model Derived LVEF 
from echo 
reports 

0.870 (0.610, 
1.000) 

0.741 (0.071, 
1.000) 

Impact of sex on LVEF estimation: Male or female 

Observation Rater 1 of 
LVEF 

Rater 2 of 
LVEF 

ICC (95% CI) 
Male (n=293) 

ICC (95% CI) 
Female (n=49) 

1 ML Model Level III expert 
visual LVEF on 
randomized 
single videos 

0.693 (0.089, 
1.000) 

0.901 (0.520, 
1.000) 



2 ML Model Level III expert 
segmentation 
LVEF on 
randomized 
single videos 

0.705 (0.073, 
1.000) 

0.869 (0.293, 
1.000) 

3 ML Model Level III expert 
visual LVEF, 
accounting for 
all videos for a 
participant  

0.740 (0.067, 
0.999) 

0.877 (0.503, 
1.000) 

4 ML model Level III expert 
segmentation 
LVEF, 
accounting for 
all videos for a 
participant 

0.796 (0.176, 
1.000) 

0.901 (0.477, 
1.000) 

5 ML Model Derived LVEF 
from echo 
reports 

0.758 (0.131, 
1.000) 

0.859 (0.279, 
1.000) 

Impact of atrial fibrillation (AF) or atrial flutter (AFL) on LVEF estimation: 

Observation Rater 1 of 
LVEF 

Rater 2 of 
LVEF 

ICC (95% CI) 
AF or AFL 
(n=108) 

ICC (95% CI) 
Non-AF or 
non-AFL 
(n=234) 

1 ML Model Level III expert 
visual LVEF on 
randomized 
single videos 

0.684 (-0.143, 
1.000) 

0.809 (0.346, 
1.000) 

2 ML Model Level III expert 
segmentation 
LVEF on 
randomized 
single videos 

0.596 (-0.067, 
0.999) 

0.829 (0.135, 
0.999) 

3 ML Model Level III expert 
visual LVEF, 
accounting for 
all videos for a 

0.708 (0.182, 
1.000) 

0.831 (0.210, 
1.000) 



participant

4 ML model Level III expert 
segmentation 
LVEF, 
accounting for 
all videos for a 
participant 

0.823 (0.350, 
1.000) 

0.860 (0.428, 
1.000) 

5 ML Model Derived LVEF 
from echo 
reports 

0.673 (-0.043, 
1.000) 

0.841 (0.271, 
1.000) 
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Key information: 

1. Research question: Visual assessment of stenosis grade in invasive coronary angiography is
highly operator-dependent due to vessel foreshortening, vessel overlap and poor image quality
by low-dose x-ray radiation. The aim of this study was to evaluate a deep learning algorithm to
segment coronary arteries on invasive coronary angiography.

2. Findings: The trained deep learning models demonstrate accurate segmentation of the left
circumflex artery, left anterior descending artery and right circumflex artery. The performance
of the model to automatically segment the left main artery was poor.

3. Meaning: Deep learning enables accurate segmentation of coronary arteries in invasive
coronary angiography, which is a crucial step towards the development of automated methods
for stenosis detection and quantification.



MANUSCRIPT (included in the word count) 

Introduction 

Invasive coronary angiography (ICA) is the gold standard to diagnose coronary artery disease (CAD)1. 
Visual assessment of stenosis grade in ICA is highly operator-dependent due to vessel foreshortening, 
vessel overlap and poor image quality by low-dose x-ray radiation2,3. Deep learning may assist in stenosis 
assessment. To enable stenosis assessment first robust coronary artery detection is needed as a 
prerequisite. Therefore, the aim of this study was to evaluate a deep learning algorithm to segment 
coronary arteries on ICA. 

Material and methods 

ICA studies of patients who underwent ICA or percutaneous coronary intervention in a tertiary center 
between 2015-2017 were retrospectively collected. ICA cine runs were manually selected for each study 
in a way that all the major coronaries were clearly visible with minimum overlap in one of the cines runs 
and stenosis grade could be assessed (stenosis degree >50%). If the patient did not have any significant 
stenosis, ICA cine runs that would suffice to assess the coronary anatomy were selected. One ICA cine 
frame was manually selected per run with vessels filled with contrast agent and preferably in end-
diastolic phase. In addition, one ICA cine frame was selected prior to administration of the contrast 
agent. The contours of the left circumflex artery (LCx), left anterior descending artery (LAD), right 
circumflex artery (RCA), and left main (LM) artery were manually segmented using dedicated software. 
For each coronary artery, the nnU-Net framework was employed to train a segmentation model. 
Performance was evaluated on an unseen test set (20% of images) by visual inspection and the dice 
similarity coefficient (DSC), a metric of segmentation performance between 0 (poor) and 1 (excellent)4. 

Results 

A total of 3404 images obtained from 1148 patients were manually segmented (Table 1). Of these 
images, 2723 images (918 patients) were used to train the segmentation models. Testing of these 
models on 681 images (230 patients) showed accurate segmentation for the LCx, LAD and RCA, with a 
median DSC of 0.82, 0.91 and 0.94, respectively (Figure 1, Table 1). The LM segmentation model had a 
median DSC of 0.04. Upon visual inspection, the LM segmentation model incorrectly classified the 
proximal LAD and proximal LCx as the LM. 

Discussion and Conclusion 

Deep learning models to segment coronary arteries in x-ray coronary angiography demonstrated 
accurate identification of the LCX, LAD and RCA. However, the performance of automated LM 
segmentation was poor. These results suggest that deep learning can support clinicians in the diagnosis 
of CAD, and furthermore, it may extract relevant features that can contribute to risk stratification5. 
Further efforts are needed to externally validate the results, evaluate the accuracy of these models 
around stenosis, and automatically detect separate coronary segments, stenosis and stenosis grade. 
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APPENDIX 

Figure 1: Representative examples of coronary artery segmentation: manual versus deep learning 



Table1:Number of patients and images included in study. 

Table 2: Performance of segmentation models. 

DSC = dice similarity coefficient; LAD = left anterior descending artery; LCx =left circumflex artery; LM = 
left main artery; RCA = right circumflex artery. 
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Key information: 
1. Research question: Is a simplified paediatric frame-less procedural workflow comparable to a

traditional frame-based method in robot-assisted implantation of depth electrodes in children
with drug-resistant epilepsy?

2. Findings: Although accuracy is less, the frame-less paediatric procedure seems to be comparable
to the adult frame-based procedure in terms of safety and accuracy, simplifying the workflow
and reducing radiation exposure.

3. Meaning: Frame-less procedures in robot-assisted implantation of depth electrodes may be a
valid alternative in children with DRE.



MANUSCRIPT (included in the word count) 

Introduction 

Robot-assisted depth electrode implantation is becoming the preferred method for invasive investigations 
in drug resistant epilepsy (DRE) due to its safety, accuracy and reducing error in addition to improved 
efficiency, and to reduce Operative Room time usage. Robot-assisted procedures in children require 
special technical considerations, such as avoiding the use of a stereotactic frame, and reducing the 
exposure to neuroimaging radiation. Several groups have published their techniques and accuracy results 
to establish this procedure. The advantages and disadvantages of implementing a frame-less procedure, 
specially tailored for children, have not yet been fully explored.  Our primary objective is to compare our 
traditional frame-based procedure performed in adults with NeuromateÒ with a new frame-less 
procedure performed in children using the ROSAÒ stereotactic robot arm to assess its accuracy and 
associated complication rates. Our secondary objective is to describe a methodology for objective 
performance analysis applied to this specific scenario and in addition, to provide Surgeons’ and Clinicians’ 
perspectives on the usage of both devices. 

Material and methods 

We retrospectively reviewed a historic cohort of 145 adult frame-based robot-assisted procedures 
(Neuromate) and our pilot series of the first 10 frame-less robot-assisted procedures (ROSA) in children 
with DRE. Surgical timing, usage of radiation, workflow analysis, accuracy results (Entry point and target 
radial error), technical issues and complications (hemorrhage, infections, deaths) were collected. 
Additionally, we conducted a survey among Neurosurgeons who are skilled on both systems, to assess 
their experiences from a user perspective (hardware, software and technical support). 

Results 

A total of 1105 electrodes where implanted in the adult group vs. 96 in the pilot pediatric group. 
Extratemporal electrodes accounted for 52.7% in the adult series and 77.1% in children.  Mean entry point 
radial error for the adult frame-based workflow was 1.17 mm (95% CI: 1.07-1.27), whereas for ROSA’s 
frame-less procedure was 1.58 mm (95% CI: 1.42-1.75). Target radial error was 1.57 mm (1.32-1.81) vs. 
1.74 mm (1.54-1.95) respectively. Target accuracy was higher in the frontal lobe for ROSA. In the adult 
workflow, there was one death, 0% infection rate and 2 cases of mild-moderate intracranial hemorrhage. 
Only one electrode in the pediatric series deviated, and no complications where registered. As expected, 
oblique and longer intracranial trajectories for both workflows showed greater error compared to shorter 
and/or orthogonal trajectories. Frame-less workflow resulted in lower overall radiation delivery by 
avoiding intraoperative fluoroscopy. The user questionnaire suggests a preference for the ROSA from a 
hardware usage perspective, while the Neuromate was preferred from a software usability perspective. 

Discussion and Conclusion 

Although limited series, both techniques seem to have comparable profile in terms of safety and accuracy. 
The accuracy of the frameless method on the ROSA was inferior to that of Neuromate, especially for 
parietal and occipital trajectories. Preliminary results suggest our frame-less robotic workflow applied in 
children is safe and involves less use of radiation. Larger samples will be needed to establish these findings, 
and this is a report on an on-going study.   
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APPENDIX 

Table 1: Mean error with 95% Confidence intervals. Deviated electrodes where not included. Eu= 
Eucledian distance, R= radial error; EP: Entry Point; T= Target. 

Adult Eu EP R EP Eu T R T 

N = 1105 1,87 1,17 2,07 1,57 

1,66 1,07 1,85 1,32 

2,09 1,27 2,29 1,81 

Rosa 

N = 96 1,75 1,58 2,17 1,74 

1,56 1,42 1,94 1,54 

1,94 1,75 2,41 1,95 
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Key information: 

1. Research question: Is hip dysplasia screening by lightly trained users feasible in a primary care
network (PCN) setting?

2. Findings: Our AI-aided workflow can be used by lightly trained users in a PCN setting. It detects
cases of hip dysplasia at the expected rate (1.6% of babies), of which half would have been missed
in the current care pathway, with specificity 99% and positive predictive value 61%.

3. Meaning: Our results make a strong case for universal screening of hip dysplasia in PCNs by lightly
trained users such as nurses. Adding AI provides these users the much-needed confidence to
perform a hip examination which can eventually lead to early and effective treatment of hip
dysplasia.

MANUSCRIPT (included in the word count) 

Introduction 



Developmental dysplasia of the hip (DDH) is a common cause of premature osteoarthritis in 
young adults1. DDH incidence averages 1-2% 1,2, up to 30x higher among Indigenous populations. 
Early screening is crucial to allow non-surgical treatment and improve outcomes since missed 
DDH necessitates multiple surgeries. Currently, DDH screening is done in most countries based 
on risk factors (eg., breech birth, family history). We have previously shown that the high false-
positive rates and user dependency that limit wide use of hip ultrasound can be reduced by 
using partially automated 3,4 or fully automated image analysis5,6. Novice users learn more easily 
to acquire ultrasound videos than single 2D frames7. Providing real time feedback on image 
quality could further improve diagnostic accuracy as inadequate images can be flagged up-
front8,9. This study examines the feasibility of an AI-augmented workflow with image quality 
feedback and diagnostic suggestions for universal DDH screening in primary care networks 
(PCNs). 

Material and methods 

Ultrasound videos were analysed in real-time using the FDA-cleared MEDO hip app (Exo Inc.). 
The hip app uses a Convolutional Neural Network (CNN) model similar to U-Net to segment the 
acetabulum and femoral head, assesses image quality based on the number of frames with 
necessary imaging landmarks, and suggests a diagnosis for physician review.  

With ethics board approval we performed hip ultrasound in three Alberta PCN clinics using a 
low-cost handheld ultrasound (Philips Lumify) connected to an Android tablet. Consecutive 
infants aged 4-16 weeks presenting for already-scheduled infant wellness check visits were 
scanned by registered nurses or physicians at the clinic. Based on AI recommendation, infants 
with possible DDH from AI screening were sent for follow-up first internally at the same centre 
1-2 weeks later, and if still suspicious for DDH, externally to a tertiary hospital orthopedic clinic
for gold-standard assessment. 

Results 

Of 697 patients scanned (2 hips each), we had 57 scan failures (8%) where no scan could be 
obtained due to uncooperative infant, software issues or clinic logistic issues.  Of the 92% of 
eligible infants successfully scanned, 591 had normal or typically developing hips (Figure 1a).  
The AI tool detected 37 cases with suspected DDH (Figure 1b) out of which 19 did not persist on 
internal follow-up.  The remaining 18 cases were sent for external follow-up: 7 resolved and 11 
were confirmed as dysplastic by the consulting radiologist (Table 1), a rate of 1.6% of eligible 
infants.  Of the DDH cases, 5 had no associated risk factors. External referral specificity for DDH 
was 0.99 and positive predictive value 61%.  Sensitivity could not be calculated since it was not 
feasible to perform gold-standard conventional ultrasound in all infants.    

Discussion and Conclusion 

This study conducted in three clinics in Alberta validates the use of AI-augmented hip ultrasound 
to screen for hip dysplasia in primary care settings. The tool provides feedback to the user when 
enough adequate-quality frames have been acquired. With this feature, nurses at the PCN were 
able to confidently perform the hip examination with minimal training, as low-quality images 
were flagged up-front. In this AI-aided workflow, we successfully scanned 92% of eligible infants 



(a rate which can be improved further with software refinements), detected the expected rate 
of DDH (1.6%), and picked up 5 babies with DDH that would have been missed in the current 
care pathway.  We had specificity 99% and positive predictive value 61% vs. gold-standard 
referral.  These results highlight the feasibility of implementing AI-augmented point-of-care hip 
ultrasound screening in infants by primary-care clinicians.  Further studies are needed to 
establish scan sensitivity and expand to larger populations. 
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APPENDIX 

Figure 1: Results from scanning 697 patients (799 total scans) in 3 different clinics (with ~6 sonographers) 
around Alberta over 2 years.  

Table 1: Hip ultrasound/AI hip dysplasia screening 

Result N % Description 
Scan failure 57 8% Could not obtain scan 
Normal at first screen 591 85% 
Normal at internal FU 19 2.7% Hips normal when re-scanned 1-2 weeks 

later in same clinic. 
Normal at external FU 7 1% i.e., false-positives from the screening

program
Dysplastic at external FU 11 1.6% Of which 5 had no risk factors for DDH and 

would not have been picked up otherwise. 
Notes: (1) percentages are as a proportion of infants eligible for screening.  (2) For screening including up to 1 
internal follow-up scan, at external referral (total 18 cases) the specificity was 99%, and positive predictive value 61%. 
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Key informaKon: 

1. Research quesKon:

Can deep learning (DL) models be used to idenKfy CD39+CD8+ T cells in H&E images of cancer
Kssues and brigheield images of blood cells?

2. Findings:

A DL model was developed for H&E images of colorectal carcinoma (CRC) samples and another
for peripheral blood mononuclear cells (PBMCs) from CRC mouse models. The F1 scores of the
models are 0.83 and 0.80, respecKvely.



3. Meaning:  
 
Preliminary results indicate DL can idenKfy CD39+CD8+ T cells, which suggests the presence of 
characterisKc morphological features. The models should be further refined and tested on more 
samples before being used to predict PD-1 and PD-L1 blockade immunotherapy response.  
 

MANUSCRIPT 

IntroducKon 

AccumulaKng evidence implicates CD39 as a tumor-specific CD8+ T cell marker. Our group showed 
that CD8+ T cells without CD39 expression are bystander tumor infiltraKng leukocytes in colorectal 
carcinoma (CRC) and non-small cell lung cancer (NSCLC)1 and that CD39-expressing CD8+ T cells 
funcKon as tumor anKgen-specific CD8+ T cells in treatment-naïve NSCLC2 and triple-negaKve breast 
cancer (TNBC)3. These findings have been confirmed by other groups4-6. Therefore, the combinaKon 
of CD39+CD8+ T cell abundance and spaKal localizaKon is a potenKal predictor of paKent response to 
PD-1 and PD-L1 blockade immunotherapy in mulKple types of cancers3-6. However, mulK-marker 
assays for idenKfying specific immune phenotypes, including CD39+CD8+ T cells, in Kssue or blood 
samples are laborious and costly, prevenKng high throughput implementaKon on paKent samples. 
To overcome these issues, we sought to develop deep learning (DL) models that have been trained 
with data from mulK-marker assays, namely mulKplex immunofluorescence and imaging flow 
cytometry, to idenKfy CD39+CD8+ T cells based on morphology in hematoxylin and eosin (H&E)-
stained Kssue images and brigheield images of immune cells from blood samples. 
   
Material and methods 

We developed DL pipelines to idenKfy CD39+CD8+ T cells in CRC samples and peripheral blood 
mononuclear cells (PBMCs) from CT26 tumor-bearing mice (CRC mouse tumor models).  

CD39+CD8+ T cells in CRC Kssue samples were visualized with mulKplex immunofluorescence. The 
samples were subsequently washed and stained with H&E. The mouse PBMCs were immunostained 
with fluorescent anKbodies and visualized with imaging flow cytometry (Fig. 1A).  

The H&E DL pipeline stages for the CRC samples are: (1) aligning fluorescence images with the H&E 
image, (2) cell segmentaKon, (3) manual idenKficaKon of CD39+CD8+ cells that serve as ground truth 
labels, (4) extracKng each cell as a small image patch with the cell in the center, and (5) training a DL 
model for CD39+CD8+ predicKon (Fig. 1A). The current model (𝛳H&E) was trained with 2,426 posiKve 
examples and 101,084 negaKve examples. 

The DL pipeline stages for the mouse PBMCs are: (1) gaKng CD8+ and CD39+ posiKvity based on 
fluorescence intensity, and (2) train a DL model for CD39+CD8+ predicKon (Fig. 1B). The current 
model (𝛳blood) was trained with 1,985 posiKve examples and 4,639 negaKve examples.  

Both DL models are convoluKonal neural networks with residual blocks. Data augmentaKon such as 
random flips, rotaKons, and brightness adjustments, were implemented. The models were evaluated 
with F1 scores.  

Results 

The current version of 𝛳H&E has a test F1-score of 0.83, 𝛳blood has a test F1-score of 0.80.  

Discussion and Conclusion 



Both models are able to idenKfy CD39+CD8+ T cells from marker-free H&E images and brigheield 
images, respecKvely, which indicates that there are morphological characterisKcs unique to these 
tumor-specific T cells. However, the models should be further improved, especially in terms of 
generalizaKon. Ongoing work include tesKng the models on more cancer types and validaKng them 
with independent cohorts. These models would eventually be applied to pre-treatment paKent 
samples of known outcomes from different cancers to evaluate their predicKve capabiliKes for PD-1 
and PD-L1 blockade immunotherapy response. 

When fully realized, cell idenKficaKon by virtual staining of H&E images (‘H&E 2.0’) and brigheield 
images of blood samples would be an inexpensive and easy-to-implement diagnosKc pathology tool 
that clinicians and researchers can use to screen large numbers of clinical samples. Any samples of 
interest could then be validated with confirmatory analyses involving the more labor-intensive and 
costly methods of mulKplex immunofluorescence and/or imaging flow cytometry (Fig. 1C). Hence, 
DL-enabled virtual staining would help a=enuate the rapidly increasing amount of medical resources 
being spent on cancer care to bring immunotherapy to more paKents in the research sesng and 
potenKally in the clinic. 
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APPENDIX 

 

Figure 1: Two deep learning models for iden5fying tumor-specific CD39+CD8+ T cells (double-
posi5ve cells) in H&E images and single blood cell images. (A) Colorectal carcinoma (CRC) sample 
secKons were visualized for CD8 and CD39 expression by mulKplex immunofluorescence and 
subsequently for morphology by H&E. Individual cells were obtained from H&E images and marked 
for CD39-CD8 posiKvity based on immunofluorescence results. These ground truth images were then 
used to train the DL model. The current version has an F1 score of 0.83, indicaKng that it can 
disKnguish double-posiKve cells from those that are not, which are shown with representaKve 
images. (B) Peripheral blood mononuclear cells (PBMCs) isolated from a CRC mouse model were 
immunostained and visualized with imaging flow cytometry. Double-posiKve cells were idenKfied 
based on fluorescence intensity of CD8 and CD39.  The model is trained on these ground truth 
images and has an F1 score of 0.80, indicaKng that it can disKnguish double-posiKve cells from those 
that are not, which are shown with representaKve images. (C) DL models that reliably predict 
CD39+CD8+ cells can be used to screen large numbers of paKent samples before expensive and 
Kme-consuming confirmatory analyses like immunohistochemistry and imaging flow cytometry. This 
will alleviate some pressure on medical resources in the immunotherapy era.  
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Key information: 

1. Research question: To provide an interactive and integrated visualization of spatial features,
such as multiple cell phenotypes, on clinically available histomorphological H&E images.

2. Findings: Visual appreciation of specific lymphocyte subsets detected by hyperplexed
immunofluorescence overlaid on the morphologically identified lymphocytes in the H&E image
space.

3. Meaning: We envision that H&E2.0 web server can serve as a data repository for researchers
and clinicians to visualize various biological information collected through manual annotation,
tissue-based multi marker assays, advanced spatial techniques, or deep learning prediction
models. Potentially, it can provide an effective solution for integrative multi-omics spatial
analysis, as well as pathology training.



MANUSCRIPT 

Introduction 

Growing evidence shows that, besides the abundance of immune cells, their spatial relationship in the 
tumor microenvironment (TME) play a critical role in anti-tumor immunity and patient survival (1, 2). 
Recent advancement of high-plex molecular profiling further facilitates the spatial interrogation of 
complex TME (3, 4), showing great potential for discovering novel spatial biomarkers. However, the 
high-plex techniques are expensive and often inaccessible. On the other hand, H&E-based deep learning 
(DL) model has gained great success in the past decade for diagnostic and prognostic utilities including
cancer subtype classification (5) and prediction for genetic alterations (5). Such success substantiates
the theory that histomorphological features in routine H&E images contain biological signal predictive of
clinically actionable information, leading to the research initiative termed H&E 2.0 (6) for extended
application of H&E digitized images via DL. Such efforts have been extended successfully for virtual
staining studies for instance in-situ CD3+ T-cell in non-small cell lung cancer(7), and gene expression of
28 different cancer types (8). To bring the advantage of H&E 2.0 to clinic, particularly for achieving
pathology consensus or for effective pathology training, visual appreciation of various spatial features in
H&E image space can give a great boost. Here, we present such a platform in a web server that
facilitates integration of, theoretically, an unlimited number of spatial features/omics data in the same
H&E space (Figure 1).

Material and methods 

The H&E-stained and hyperplex immunofluorescence (IF) images of a colorectal cancer tissue section 
were first preprocessed (background noise removal, tissue contour identification and binary mask 
generation) for tissue region extraction. The processed image pair were then registered with the 
imreg_dft 2.0.0 package. Cells in H&E images were segmented using the StarDist extension on QuPath 
v0.4.3; while cells in the paired IF image were segmented using the Mesmer model from the DeepCell 
library in a Docker container from steinbock v0.16.1 toolkit. React which is a library for web and user 
interfaces was used to build the front end of H&E2.0 web server. The visualization functions of the web 
server were implemented with PlotyJS. Redux, an open-source JavaScript library, was used to manage 
the front-end data. The HE2.0 web server is freely accessible at https://mspc.bii.a-
star.edu.sg/minhn/he2.html.  

Results 

In the demo image of a colorectal cancer tissue (Figure 2), we identified all the cells from H&E image 
which was overlaid with the individual cell type markers quantified by multiplexed immunofluorescence 
on the same tissue section. In this CRC tissue, we identified 297,000 cells of which 83,500 are tumour 
epithelial cells, 5900 are proliferative tumour epithelial cells, 24,500 are CD8+ cytotoxic T-cells, 2400 are 
CD4+ helper T-cells and 600 are CD68+ macrophages. Interactive visualization of selected marker(s) on 
the H&E image reveals that there are lymphocytic aggregates near small tumour islands within the TME. 
This is confirmed with the IF mask of the interactive slider, where CD8+ and CD4+ T-cells are present in 
these lymphocytic aggregates. 

Discussion and Conclusion 

We propose an online database with interactive visualization capability, aiming to extend the clinical 
usability of routinely collected H&E digitized images for multi-scale spatial analysis and pathology 



training. With AI-enabled image processing including cell identifying and phenotyping as well as image 
registration, we can integrate additional spatial information, that is obtained via various spatial 
techniques, onto the H&E space. To unlock the full potential, DL-based virtual staining models can be 
incorporated to the web server to enable prediction of various spatial omics data from the query H&E 
images, offering a feasible solution for multi-omics spatial analysis as well as to bring about innovative 
pathology learning.  
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APPENDIX 

Figure 1: The concept of H&E 2.0 web server serving as a shared data repository that enables interactive 
visualization of selected spatial features (like cell phenotypes) overlaid on H&E image space. At future 
beta stage, DL model(s) will be incorporated to allow predictions of cell types, gene expression, or other 
omics using low-cost H&E images uploaded by users. 

Figure 2: A snippet of H&E 2.0 web server on a colorectal cancer tissue where various tumor and 
immune cell types quantified using hyperplex IF technique are overlaid on the H&E image space. 
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Key information: 

1. Research question: To synthesize high-quality images for one of the phases in a 3-phase
kidney CT. This goal will be achieved by employing a model that can leverage the
redundant information in these CT examinations.

2. Findings: A two-channel transformer model can synthesize high-quality images in a 3-
phase kidney CT. The synthesized images demonstrate high structural similarity indices
relative to the ground-truth images.

3. Meaning: The ability to accurately synthesize one of the three phases in a kidney CT
obviates the need to acquire all three phases. Radiation can be reduced 33% by
synthesizing rather than acquiring this set of images.



MANUSCRIPT 

Introduction 

CT urography (CTU) is commonly performed for the evaluation of hematuria1. CTU studies include 
first a non-contrast set of images, second a nephrographic phase acquired ~90 seconds following 
the intravenous administration of iodinated contrast, and finally a urographic phase 5-10 minutes 
after the initial contrast injection. This 3-phase CTU study requires three times the radiation dose 
compared to conventional single-phase CTs2. There is inherently redundant information within 
the urographic phase set of images given the continued enhancement of the kidneys. Deep 
learning methods have the potential to exploit this redundancy. The purpose of this study was to 
develop a deep learning model to synthesize nephrographic phase images from the non-contrast 
and urographic phases (Figure-1). As a result, the nephrographic phase acquisition itself could 
be eliminated, effectively reducing a 3-phase to a 2-phase acquisition but still providing the unique 
nephrographic phase information. Moreover, the radiation dose can be reduced by ~33% of the 
original 3-phase CT. 

Material and methods 

A dataset of 101 patients (mean±SD age, 64±12 years; 61/40 males/females) with CTU studies 
was curated. The three phases were registered using affine rigid registration. A total of 4,080 
registered images from the non-contrast, nephrographic, and urographic phases from the 101 
patients were obtained and divided into an 80/20 train/test split. 

A deep learning residual transformer (ResViT)3 model was implemented with dual inputs of non-
contrast and urographic sets of images. The model was tuned with 12 attention heads and 3,073 
hidden units in each multilayer perceptron. The model was trained with a learning rate of {2×10!", 
10!#, 10!$} and {200, 500, 700} epochs. The weighting of the pixel-wise, pixel consistency, and 
adversarial loss, respectively, were chosen as 𝜆% = 100 , 𝜆& = 100 and 𝜆'() = 1. The structural 
similarity index measure (SSIM)4 and peak signal-to-noise ratio (PSNR)5 were computed for the 
synthesized images. Heat maps and kernel density estimate plots were used to compare real and 
synthesized images. The region of the kidneys was compared between real and synthesized 
images with cross correlation. 

Results 

Nephrographic phase images were successfully synthesized with the dual-input ResViT model, 
with negligible qualitative differences between synthesized and real images. The synthesized 
images yielded a mean PSNR of 28.1164±2.5806 as well as a mean SSIM of 0.9229±0.0406 as 
compared to real images. There were minimal differences in Hounsfield unit values between the 
real and synthesized images (Figure-2). A high cross correlation of 0.9642 was found between 
the real and synthesized images for the region of the kidneys. 

Discussion and Conclusion 

A ResViT model was implemented and customized for synthesizing nephrographic phase images 
in CTU studies from paired non-contrast and urographic phase images. The results demonstrate 
the robustness and effectiveness of the model in synthesizing nephrographic phase images. The 
synthesized images were highly similar to real images and achieved high SSIM and PSNR values. 

The proposed ResViT model has great potential in clinical applications, particularly given that the 
method can yield a 33% radiation dose reduction in 3-phase CTU. Moreover, this study lays the 



groundwork for implementing the model in CTU examinations acquired with dual-energy CT 
(DECT). A standard component of DECT is the creation of virtual non-contrast images. The 
ResViT model can be re-trained to synthesize nephrographic images using the urographic and 
virtual non-contrast images. Thus, only a single dual-energy acquisition of the urographic phase 
would ultimately be needed. This approach yields a 66% radiation dose reduction as well as 
substantial scan time savings since only a single acquisition would now be needed instead of 
three. The ResViT model for synthesizing images in multiphase CT examinations of the kidney is 
well poised to translate quickly to clinical practice and substantially change the method with which 
these studies are performed. 
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APPENDIX 

Figure 1: Paired non-contrast and urographic images are provided as input for the ResViT 
model to synthesize the nephrographic image. 

Figure 2: Heat maps of Hounsfield units (a, b) for the real and synthetic generated images and 
the difference between the real and synthetic images (c). The kernel density estimate (KDE) plot 
(d) shows high similarity between the real and synthetic images.
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Key information: 

1. Research question: Automatic Segmentation for Volumetric Assessment of Tumorous
Subregions in Pediatric Brain Tumors

2. Findings:  Our proposed automated segmentation method shows high Dice Similarity Score in
segmentation of pediatric tumor and its subregions. Furthermore, the predicted volumetric
measurements are highly correlated with expert volumetric measurements.

3. Meaning: This model has the potential to be used in clinical assessment of treatment response in
pediatric neuro-oncology trials.

MANUSCRIPT (included in the word count) 



Introduction 

Pediatric brain tumors are the most common solid tumors with high level of heterogeneity 1. The 
standard approach for response assessment in pediatric brain tumors is bidimensional (2D) 
measurements of the tumor size, as recommended by the Response Assessment in Pediatric Neuro-
Oncology (RAPNO) working group 2, 3. However, there have been studies suggesting an underestimation 
of tumor size using 2D measurements 4. Volumetric assessment of tumors can measure changes of tumor 
size reliably, especially for irregularly shaped tumors, without assuming uniform change in tumor size in 
all dimensions. However, the complex structure of pediatric brain tumors and the mixed solid/cystic 
components pose a challenge on manual segmentation of tumorous subregions 5. Aside from being time 
consuming and cumbersome, neuroradiologists without sufficient training pediatric neuroimaging may 
have difficulty in differentiating tumor subregions from each other, resulting in large intra and inter-rater 
variabilities. In this study, we utilized a fully automatic deep learning approach on a large cohort of 
pediatric brain tumors, collected across multiple tumor histologies, scanners, and institutions, to facilitate 
volumetric measurement of tumor subregions and thereby, assessment of tumor burden.  

Material and methods 

We utilized nnU-Net (‘no new net') self-configuring deep learning architecture for the task of 
brain tumor segmentation 6 on multiparametric standard MRI sequences (T1-pre, T1-post, T2, 
T2-FLAIR). The model was trained and validated on a large cohort of well-annotated pediatric 
brain tumors using 5-fold cross-validation to differentiate RAPNO-recommended subregions 5, 
including enhancing tumor (ET), non-enhancing tumor (NET), cystic components (CC), and 
peritumoral edema (ED). The data was collected through Children’s Brain Tumor Network 
(CBTN) 7 from internal and external institutions. The model was trained on an institutional 
cohort of 233 subjects and independently tested on 60 subjects from the internal and 46 from 
external institutions. Performance of the model in segmentation of tumor subregions as well as 
whole tumor, as a union of all subregions, was assessed by calculating Dice score and 
Hausdorff95 distance metrics. Furthermore, clinical validity of the proposed approach was 
tested by measuring the volumes of RAPNO-defined tumor subregions from the segmentations 
predicted by the model in comparison with the values obtained from expert manual 
segmentations, via Pearson’s correlation coefficient (significance level, p < 0.05). 

Results 

The trained model showed excellent performance with median Dice scores of 0.94±0.10/0.90±0.07 for 
whole tumor segmentation, 0.85±0.33/0.84±0.30 for ET subregion, 0.80±0.32/0.64±0.31 for NET,  
0.79±0.37/0.67±0.33 for CC, 0.70 ±0.42/0.37±0.43 for ED, and 0.86±0.19/0.80±0.21 for all nonenhancing 
components (combination of NET, CC, and ED) in internal/external test sets, respectively (Table 1). Figure 
1 showcases examples of predicted segmentations using our proposed model, compared to expert 
segmentation in subjects from internal and external sets. The automated segmentation demonstrated 
strong agreement with expert segmentations in volumetric measurement of tumor components, with 
Pearson’s correlation coefficients of 0.93/0.69, 0.94/0.93, 0.78/0.93, and 0.94/0.50 (p<0.01) for ET, NET, 
CC, and ED regions in internal/external test cohorts, respectively (Figure 2). 

Discussion and Conclusion 



Here, we proposed an automated segmentation method with accurate performance in 
segmentation of RAPNO-define subregions in pediatric brain tumors, with decent generalization 
to the data from external sites. This method may be incorporated with clinical neuro-oncology 
practice to generate reliable and reproducible volumetric measurements that can be used for 
treatment response assessment in pediatric brain tumors. 
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APPENDIX 

Figures and pictures should be added in this section. 

Figure 1: examples of subjects from internal and external test sets, with the predicted segmentation as 
compared to the expert (manual) segmentation results, as well as the Dice scores on the tumor 
subregions, the whole tumor, and all nonenhancing components (i.e., nonenhancing tumor, edema, and 
cystic component). 



Figure 2: scatterplots indicating volumetric features computed from predicted versus manual 
segmentations for all subjects in the internal and external test sets. These features that are important 
for tumor response assessment according to RAPNO criteria include proportions of the whole tumor 
area that is cystic component, edema, enhancing tumor, nonenhancing tumor.   

Tables should be added here. 
Table 1. Summary of the performance of the proposed segmentation algorithm in terms of Median Dice 
Score and Hausdorff95 distance metrics, in the internal and external test sets, i.e., Testi and Teste, 
respectively. 

Region Median Dice Score Hausdorff95 
Testi Teste Testi Teste 

Whole Tumor 0.94 0.90 3.08 2.00 

Enhancing Tumor 0.86 0.84 3.34 2.36 

Nonenhancing Tumor 0.79 0.64 5.38 2.28 

Cystic Component 0.78 0.67 6.40 3.60 

Edema 0.70 0.36 25.97 6.40 

All Nonenhancing Regions 0.86 0.80 3.61 2.24 
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Key	information:	

1. Research	question:	Whether	a	multimodal	neural	network	model	using	CT	images	and	clinical
variables	as	input	is	superior	to	a	convolutional	neural	network	model	using	CT	images	alone	in
predicting	hematoma	expansion	in	acute	intracerebral	hemorrhage.

2. Findings:	A	multimodal	neural	network	model	showed	perfect	sensitivity	and	better
performance	than	a	convolutional	neural	network	model.

3. Meaning:	Since	hematoma	expansion	leads	to	neurological	deterioration	and	the	need	for
surgical	treatment,	its	prediction	by	the	built	multimodal	neural	network	model	at	the	time	of
admission	is	very	helpful	in	developing	patient	management	strategies.
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Introduction		
In	intracerebral	hemorrhage	(ICH),	hematoma	expansion	occurs	in	20-30%	of	cases,	leading	to	
neurological	deterioration	and	the	need	for	surgical	treatment.1	Although	various	CT	markers	and	
scoring	systems	have	been	proposed	to	predict	hematoma	expansion,	CT	image	analysis	using	a	
convolutional	neural	network	(CNN)	has	shown	better	predictive	performance	than	these.2,3	However,	in	
addition	to	CT	images,	clinical	information	such	as	anticoagulant	use	and	time	from	onset	to	baseline	
imaging	are	important	factors	in	predicting	hematoma	expansion.	In	this	study,	we	aimed	to	develop	a	
multimodal	neural	network	model	using	CT	images	and	clinical	variables	as	input	and	to	validate	the	
superiority	of	the	multimodal	model	over	the	CNN	model	using	CT	images	alone.	

Material	and	methods	
Patients	with	ICH	admitted	to	4	hospitals	were	retrospectively	enrolled	in	the	study	(Table	1).	
Intraparenchymal	hematoma	was	annotated	using	3D	Slicer,	where	hematoma	volumes	were	
calculated.	Hematoma	expansion	was	defined	as	an	increase	in	volume	between	baseline	and	follow-up	
CT	scans	exceeding	6	cm3	or	33%.	70%	of	the	patients	in	3	hospitals	were	randomly	assigned	to	the	
training	set	and	the	rest	in	those	hospitals	to	the	validation	set;	patients	in	one	other	hospital	were	
assigned	to	the	test	set.	Clinical	variables	at	admission	were	collected	from	each	patient,	for	which	
univariate	analyses	were	performed	between	expansion	and	no	expansion	cases	in	the	training	set,	from	
which	statistically	significant	variables	were	extracted	(Table	2).		
The	computational	environment	and	the	preprocessing	of	the	CT	images	were	summarized	in	Table	3.	
First,	two	CNN	models	were	created	and	compared	using	whole	brain	images	(CNN	model	1)	and	
intraparenchymal	hematoma	images	(CNN	model	2)	as	input.	The	model	architectures	were	shown	in	
Figure	1.	Then,	whole	brain	images	or	intraparenchymal	hematoma	images,	whichever	was	superior	in	
the	comparison,	was	used	as	one	input	for	multimodal	neural	network	models,	where	two	more	models	
were	created	using	all	clinical	variables	(multimodal	model	1)	and	statistically	significant	variables	
(multimodal	model	2)	as	the	other	input.	In	each	of	the	4	models,	70	epochs	of	training	were	performed,	
where	10	model	weights	that	showed	better	sensitivity	and	area	under	the	curve	(AUC)	were	selected	
and	used	for	testing.	Among	them,	the	one	with	the	highest	sensitivity	was	selected	as	the	test	result	in	
each	model.	

Results	
273	patients	were	enrolled	in	the	training	and	validation	sets	and	106	patients	in	the	test	set;	hematoma	
expansion	occurred	in	54	(19.8%)	of	the	former	and	14	(13.2%)	of	the	latter.	Both	CNN	model	1	and	CNN	
model	2	showed	a	sensitivity	of	1.000,	but	CNN	model	2	showed	higher	AUC	(Table	3).	Therefore,	
intraparenchymal	hematoma	images	were	used	for	the	multimodal	neural	network	models.	Multimodal	
model	2	performed	best	among	4	models	(Table	4).	

Discussion	and	Conclusion
We	developed	and	validated	a	multimodal	neural	network	model	using	CT	images	and	clinical	variables,	
showing	perfect	sensitivity	and	better	performance	than	the	CNN	model	using	CT	images	alone.	Since	
hematoma	expansion	leads	to	neurological	deterioration	and	the	need	for	surgical	treatment,	its	
prediction	by	this	model	at	admission	is	helpful	in	developing	patient	management	strategies.	Although	



the	sensitivity	of	1.000	was	achieved,	the	lower	limit	of	its	confidence	interval	was	0.681,	indicating	that	
more	cases	are	needed	for	more	reliable	model	validation.	
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Figure	1.	Neural	network	model	architectures.	A)	A	convolutional	neural	network	(CNN)	model	using	
only	CT	images	as	input	(CNN	model).	After	preprocessing,	4	convolutional	layers	followed	with	kernel	
sizes	of	19x19x7,	19x19x7,	14x14x5,	and	11x11x4,	respectively.	b)	A	multimodal	neural	network	model	
using	CT	images	and	clinical	variables	as	input	(multimodal	model).	The	upper	part	was	the	same	
architecture	as	in	a,	and	the	lower	part	was	added	for	clinical	variables.	

Table	1.	Inclusion	and	exclusion	criteria	for	the	study	

Inclusion	criteria	 Exclusion	criteria	
l ≥	18	years	of	age
l Baseline	CT	scan	within	24	hours	of	onset
l Follow-up	CT	scan	within	30	hours	of

baseline	CT	scan
l Baseline	and	follow-up	CT	scans	with	a

thickness	of	0.5-2.0	mm	and	an	image	size	of
512	x	512	or	greater

l Traumatic	ICH,
l Secondary	cause	of	ICH
l Surgical	evacuation	before	follow-up	CT	scan

ICH	=	intracerebral	hemorrhage	



Table	2.	Clinical	variables	at	admission	

All	variables	 Statistically	significant	variables*	
l Age
l Sex
l Medical	history	(ICH,	cerebral	infarction,

ischemic	heart	disease,	hypertension,
diabetes	mellitus,	and	dyslipidemia)

l Anticoagulant	use
l Antiplatelet	use
l Glasgow	Coma	Scale
l Systolic	blood	pressure
l Diastolic	blood	pressure
l Blood	test	(PT-INR,	white	blood	cell	count,

hemoglobin,	platelet	count,	serum
creatinine,	and	serum	total	bilirubin)

l Time	from	onset	to	baseline	CT	scan

l Anticoagulant	use
l Systolic	blood	pressure
l Diastolic	blood	pressure
l PT-INR
l Time	from	onset	to	baseline	CT	scan

*The	variables	with	p<0.05	in	the	Mann-Whitney	U	test	and	Fisher’s	exact	test	between	expansion	and
no	expansion	cases	in	the	training	data	set	were	defined	as	statistically	significant	variables.	ICH	=
intracerebral	hemorrhage,	PT-INR	=	prothrombin	time-international	normalized	ratio

Table	3.	Computational	environment	and	preprocessing	of	the	CT	images	

Computational	environment	 Preprocessing	
l All	data	processing	was	done	in	Python	and

Keras
l The	code	was	executed	in	Google	Colab	Pro

(40	GB	of	GPU	memory).

l Brain	and	hematoma	extraction	with	the
application	of	Haunsfield	units	from	0-100
and	subsequent	normalization

l Reslicing	with	a	slice	thickness	of	2	mm,
where	the	number	of	slices	was	80

l Standardizing	the	pixel	size	to	0.5	mm	x	0.5
mm

l Resizing	the	image	size	to	256	x	256
l Data	augmentation	by	image	flipping	and

rotation	only	for	expansion	cases	due	to
imbalance	between	expansion	and	no
expansion	cases

Table	4.	Result	of	4	models	for	the	test	set	

Sensitivity	 Specificity	 AUC	
CNN	model	1	 1.000	(0.681-1.000)	 0.163	(0.094-0.255)	 0.582	(0.544-0.614)	
CNN	model	2	 1.000	(0.681-1.000)	 0.511	(0.404-0.617)	 0.755	(0.704-0.807)	
Multimodal	model	1	 0.857	(0.572-0.972)	 0.717	(0.614-0.806)	 0.787	(0.682-0.893)	
Multimodal	model	2	 1.000	(0.681-1.000)	 0.598	(0.490-0.699)	 0.799	(0.749-0.849)	

Data	are	presented	as	value	(95%	confidence	interval).	AUC	=	area	under	the	receiver	operating	
characteristic	curve	
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and IV-DSR for detection of PEs would reduce time to diagnosis of PEs and save lives.
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Introduction  

A pulmonary embolism (PE) is a clot that blocks the pulmonary arteries and prevents blood 
from traveling from the heart to the lungs. Patients who develop PEs often present with 
dyspnea and pleuritic chest pain as well as potentially life-threatening low blood oxygen 
levels.1 In a study by Mansella et al, the mortality rate with early diagnosis of PEs was 1.6% vs a 
mortality rate of 43.2% for delayed diagnosis.2 The gold standard for diagnosing PEs is 
computed tomography pulmonary angiography (CTPA). However, in low to middle income 
countries, and in rural settings around the world, there is limited or non-existant access to CT 
scanners.3,4 When a CT scanner is not available, a viable alternative for detecting medium to 
large PEs is fluoroscopy-guided catheter angiography. Furthermore, a study by Musset et al 
showed a sensitivity of 94% for detection of medium and large PEs using IV-DSA, obviating the 
need of catheter angiography.5 In this paper, we propose using IV contrast, rapid serial 
radiography (RSR) and IV contrast dual-subtraction radiographs (IV-DSR) for detection of PEs.  

The aim of this paper is to: 

1. Demonstrate how CT scan data can be used to simulate RSR and IV-DSR.

2. Discuss the design of prospective clinical study to test the accuracy of RSR and IV-DSR for
detection of PEs.

Material and methods 

A single negative CTPE CT study from the RSNA PE dataset was used to simulate a frontal radiograph.6 
The conversion from CT scan to frontal radiograph was done by taking an average of the Hounsfield 
Units (HU) along the AP dimension of the CT scan. Next, an axial slice of the CT scan was selected that 
intersected with the left pulmonary artery and a synthetic version of that same axial slice with PE was 
created by replacing the attenuation values with the pulmonary artery (approximately 400 HU) with the 
attenuation values of a PE (33 HU). The average linear attenuation for the x-ray that intersected the left 
pulmonary artery, and the synthetically added PE, was calculated for the axial slice with no PE and the 
synthetic addition of a PE.  

Results 

The average linear attenuation of the x-ray that intersected the pulmonary artery in the CTPE negative 
axial slice was -200 HU (Figure 1). The average linear attenuation of the x-ray that intersected the PE in 
the pulmonary artery in the synthetic dataset was -222 HU (Figure 2). The simulated chest radiograph is 
shown in Figure 3. 



Discussion and Conclusion 

We have simulated chest radiographs in which patients are given IV-contrast before the radiograph is 
taken. Furthermore, we have calculated the average linear attenuation for a specific x-ray that bisects a 
left pulmonary artery that is filled with IV-contrast vs a left pulmonary artery with a fully occlusive PE. 
The results showed that the difference in linear attenuation is 22 HU. Generally, a radiograph is 
windowed for display of average linear attenuation from -1,000 to 1,000 HU. Thus, the difference in 
contrast in a IV-contrast radiograph with and without a PE is  about 1% (22/2,000). This shows that IV-
DSR would be required for detection of PEs with radiographs. Our next step will be to identify patients at 
our institution who had triple-phase CT chest scans (part of our trauma imaging protocol) and were 
found to have PEs. We will then use the methods developed for this paper to convert the pre and post-
contrast CT scans into radiographs and generate the equivalent of RSR IV-DSR images.  

Finally, if the initial study with simulated radiographs is promising, we will undertake a prospective 
randomized control trial in which we enroll patients with and without PEs to undergo RSR and IV-DSR. 
An RSR IV-DSR study will include a non-contrast chest radiograph followed by RSR (5 radiographs/second 
over 4 seconds so as to cover approximately one respiratory cycle) after administration of IV-contrast 
and an appropriate delay to allow the contrast to reach the pulmonary artery. DSR images will be 
created by subtracting the initial non-contrast radiograph image from the images captured using RSR. 
The study’s interpreting radiologist will review the subtracted images and identify the one with the least 
patient movement and respiratory motion and highest diagnostic value and proceed to make a 
diagnosis. 

In conclusion, we have described initial simulation data and a proposed framework for diagnosing PEs in 
low-resource settings where CT scanners are not available. In its success, IV-DSR for detection of PEs 
would reduce time to diagnosis of PEs and save lives. 
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Figure 1: Axial slice from negative CTPE CT study from the RSNA PE dataset. The red line shows a ray that 
intersects the left pulmonary artery. The average linear attenuation of all the pixels in this ray’s path 
was calculated to be -200 HU. 

Figure 2: Axial slice from negative CTPE CT study from the RSNA PE dataset. A grey circle has been added 
to the left pulmonary artery to simulate a pulmonary embolism. The red line shows a ray that intersects 
the left pulmonary artery and the synthetic pulmonary embolism. The average linear attenuation of all 
the pixels in this ray’s path was calculated to be -222 HU. 



Figure 3: Radiograph generated from a negative CTPE CT study from the RSNA PE dataset. The 
conversion from CT scan to frontal radiograph was done by taking an average of the Hounsfield Units 
(HU) along the AP dimension of the CT scan. 
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1. Research question: We seek to develop a novel deep learning (DL) framework to automatically
segment the humeral cortex, subacromial bursa, including detection of full thickness rotator cuff
tears automatically from shoulder ultrasound (US) cine sweeps. The purpose is to determine
whether Artificial Intelligence (AI) can be utilized to detect rotator cuff tendon tears from shoulder
US images.

2. Findings: Our proposed architecture based on a modified version of U-Net achieved 92% accuracy
in segmenting the rotator cuff tendons, humeral cortex, and subacromial bursa. After that, a CNN
architecture VGG-16 achieved 78% accuracy in classifying the rotator cuff tendons as intact or
torn from US images in a preliminary data set.



3. Meaning: AI detection of rotator cuff tears from ultrasound directly adds value to the health care
system as it could allow non-specialized providers to quickly detect rotator cuff tears from
ultrasound, reducing long wait times for patients and decreasing overall health care system costs.
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Introduction  

Chronic shoulder problems are the second-most prevalent orthopedic complaint after knee problems 
worldwide [1]. Anatomical assessment for rotator cuff injury requires accurate segmentation of the 
humeral cortex, rotator cuff tendon and subacromial bursa [2]. Currently, this is performed manually by 
a musculoskeletal radiologist, which is expensive, tedious, and time-consuming [3]. Ultrasound (US) is a 
faster and less expensive alternative to MRI [4]. We proposed a novel end-to-end deep learning (DL) based 
approach to segment clinically relevant regions like the humeral cortex, subacromial bursa and rotator 
cuff tendons and to identify whether the tendons are intact or torn based on these regions.  

Material and Methods 

In recent years, the U-Net [5] has achieved increasing success in the segmentation of MRI and CT data. 
However, ultrasound segmentation is more challenging due to the inherent speckle noise and artifacts. 
We proposed a modified version of U-Net [6] to automatically segment the humeral cortex, subacromial 
bursa, and rotator cuff tendons from 2D US image cine sweeps. The modified version makes use of a U-
Net based backbone network incorporated with a bidirectional feature network for the task of 
segmentation [6]. After that, the original US images and the corresponding segmentation are passed 
inside another CNN architecture VGG-16 [7, 8] to detect the rotator cuff tear in the tendons. This study 
was performed on a dataset collected retrospectively, with institutional ethics approval, from 56 adult 
subjects with MRI-confirmed intact (n=29) or torn (n=27 full thickness tears) rotator cuffs, containing 8860 
2D US images. The whole dataset was divided into 70% for training, 15% for validation, and the remaining 
15% for testing. The training approach utilizes 5-fold cross-validation to obtain an accurate measure of 
the generalizing capability of the proposed model. Training parameters are chosen as follows: learning 
rate = 1x10!", batch size = 16, epochs = 200. It took around 5 hours to train the network and the prediction 
took 4 ms per image on two NVIDIA GeForce GTX 1080 GPU processors. 

Results 

Table 1. reports the Dice Coefficient (DC) and the Hausdorff Distance (HD) between manual segmentation 
and the segmentation by automated methods. Our proposed method performed significantly better than 
the current state-of-the-art methods [7-10]. Our proposed architecture based on a modified version of U-
Net achieved 0.92 Dice Coefficient in segmenting the rotator cuff tendons, humeral cortex and 
subacromial bursa. After that a CNN architecture VGG-16 achieved 78.6% accuracy (sensitivity 76.5%, 
specificity 75.3%) in classifying rotator cuff tendons as intact or torn from US images. 

Discussion and Conclusion 

Segmentation of the humeral cortex and subacromial bursa is difficult from ultrasound images due to 
noise, speckle, and artifacts, making it challenging to distinguish between different structures and 
boundaries accurately. This project aims to provide the core AI process needed to transform the current 
care pathway used for the assessment of shoulder injuries; specifically identifying full-thickness rotator 
cuff tears within minutes, rather than months, from when the patient consults a care provider. We 



developed an AI tool that identifies regions in the shoulder scans that are common sites of rotator cuff 
tears and detects the tears based on these regions. Compared to an end-to-end black box classifier, our 
two-stage approach is more explainable and focuses on clinically relevant landmarks. Our segmentation 
accuracy was high.  Although the classification accuracy (79%) was not yet high enough for clinical use, 
this is a highly promising result in a small preliminary data set and provides motivation for us to expand 
this study to a larger data set (including some partial-thickness tears).   
If successfully validated in a larger cohort, the automated tool could be used by lightly trained users at 
initial point-of-care facilities like family physician clinics and emergency rooms. In addition to our planned 
large-scale study with >200 subjects, we plan to explore weakly supervised and unsupervised approaches 
which could potentially improve prediction model accuracy and efficiency. 

References 

[1] Zheng F, Wang H, Gong H, Fan H, Zhang K, Du L. Role of Ultrasound in the Detection of Rotator-Cuff
Syndrome: An Observational Study. Med Sci Monit. 2019;25:5856-5863.

[2] Rutten MJ, Jager GJ, Kiemeney LA. Ultrasound detection of rotator cuff tears: observer agreement
related to increasing experience. AJR Am J Roentgenol. 2010 Dec;195(6):W440-6.

[3] Fischer CA, Weber MA, Neubecker C, Bruckner T, Tanner M, Zeifang F. Ultrasound vs. MRI in the
assessment of rotator cuff structure prior to shoulder arthroplasty. J Orthop. 2015 Jan 28;12(1):23-30.

[4] Abdolali F, Kapur J, Jaremko JL, Noga M, Hareendranathan AR, Punithakumar K. Automated thyroid
nodule detection from ultrasound imaging using deep convolutional neural networks. Comput Biol Med.
2020 Jul;122:103871.

[5] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on MICCAI, Springer, 2015.

[6] Keetha, Nikhil & Parisapogu, Samson Anosh Babu & Annavarapu, Chandra. U-Det: A Modified U-Net
architecture with bidirectional feature network for lung nodule segmentation. EESS 2020.

[7] Karen Simonyan, Andrew Zisserman, Very Deep Convolutional Networks for Large-Scale Image
Recognition, CVPR, 2015.

[8] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4, inception-
resnet and the impact of residual connections on learning. AAAI Conference on Artificial Intelligence,
2017.

[9] Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, Jianming Liang, UNet++: A Nested
U-Net Architecture for Medical Image Segmentation, CVPR, 2018.

[10] Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan Adeli, Yan Wang, Le Lu, Alan L. Yuille, Yuyin
Zhou, TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation, CVPR, 2021.

Disclosures 

The authors declare that they have no financial or non-financial conflicts of interest in relation to this 
research study. Our research and findings are conducted independently and without bias.  



APPENDIX 

Figure 1. 

 

Figure 1: Shoulder ultrasound scan showing anatomical landmarks like humeral head cortex, subacromial 
bursa and subscapularis muscle.  

Figure 2. 

 

Figure 2: Illustration of our proposed solution combining the segmentation and classification models. 

 



Figure 3. 

Figure 3: The automated segmentation results of Modified U-net and U-Net++ with different Dice 
coefficient (DC) values. The red segmentation represents the manual segmentation or ground truth. 



Table 1. 
Evaluation of automated segmentation results in comparison to expert manual segmentation. The higher 
the Dice coefficient or the lower the Hausdorff distance the better the results. 

Methods Dice Coefficient (DC) (%) Hausdorff Distance (HD) (mm) 

Modified U-Net 
(Our method) 

92.4 ± 2.3 2.06 ± 2.8 

U-Net 88.5 ± 4.6 6.7 ± 3.5 

TransUNet 82.2 ± 8.7 8.1 ± 4.2 

U-Net++ 90.3 ± 3.5 6.01 ± 4.9 

Table 2. 
Evaluation of automated segmentation results in comparison to expert manual segmentation. The higher 
the Dice coefficient or the lower the Hausdorff distance the better the results. 

Methods Accuracy (%) Sensitivity Specificity Precision 

VGG-16 78.62 76.50 75.34 77.01 

ResNet 76.53 75.05 73.68 72.91 

Inception-V4 72.03 70.46 73.24 71.46 
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